6-Channel EMI Filter Array with ESD Protection

Product Description

The CSPEMI306A is a six channel low—pass filter array that reduces EMI/RFI emissions while at the same time providing ESD protection. It is used on data ports on mobile devices. To reduce EMI/RFI emissions, the CSPEMI306A integrates a pi—style filter (C-R-C) for each of the 6 channels. Each high quality filter provides greater than 30 dB attenuation in the 800-2700 MHz range. These pi—style filters also support bidirectional filtering, controlling EMI both to and from a data port connector.

In addition, the CSPEMI306A provides a very high level of protection for sensitive electronic components that may be subjected to electrostatic discharge (ESD). The input pins safely dissipate ESD strikes of ± 15 kV, exceeding the maximum requirement of the IEC 61000-4-2 international standard. Using the MIL-STD-883 (Method 3015) specification for Human Body Model (HBM) ESD, the device provides protection for contact discharges to greater than ± 30 kV.

The CSPEMI306A is particularly well suited for portable electronics (e.g. cellular telephones, PDAs, notebook computers) because of its small package footprint and low weight. The CSPEMI306A is available in a space—saving, low—profile Chip Scale Package with optional lead—free finishing.

Features

- Six Channels of EMI Filtering for Data Ports
- Pi Style EMI Filters in a Capacitor Resistor Capacitor (C – R – C) Network
- Greater than 32 dB Attenuation at 1 GHz
- ±15 kV ESD Protection on each Channel (IEC 61000-4-2 Level 4, Contact Discharge)
- ±30 kV ESD Protection on each Channel (HBM)
- Chip Scale Package Features Extremely Low Lead Inductance for Optimum Filter and ESD Performance
- 15-Bump, 2.960 mm x 1.330 mm Footprint Chip Scale Package (CSP)
- These Devices are Pb-Free and are RoHS Compliant

Applications

- EMI Filtering and ESD Protection for both Data and I/O Ports
- Wireless Handsets
- Handheld PCs / PDAs
- MP3 Players
- Notebooks
- Desktop PCs

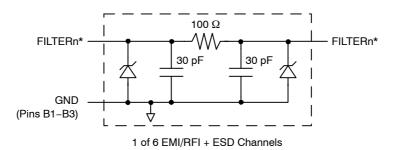
ON Semiconductor®

http://onsemi.com

WLCSP15 CASE 567BS

MARKING DIAGRAM

+ 306A

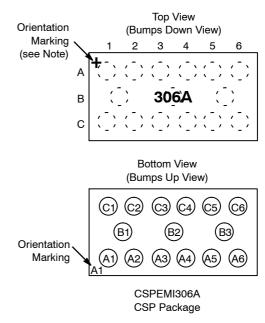

306A = CSPEMI306A

ORDERING INFORMATION

Device	Package	Shipping [†]
CSPEMI306A	CSP-15 (Pb-Free)	3500/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL SCHEMATIC



*See Package/Pinout Diagrams for expanded pin information.

Table 1. PIN DESCRIPTIONS

Pin(s)	Name	Description
A1	FILTER1	Filter Channel 1
A2	FILTER2	Filter Channel 2
A3	FILTER3	Filter Channel 3
A4	FILTER4	Filter Channel 4
A5	FILTER5	Filter Channel 5
A6	FILTER6	Filter Channel 6
B1-B3	GND	Device Ground
C1	FILTER1	Filter Channel 1
C2	FILTER2	Filter Channel 2
СЗ	FILTER3	Filter Channel 3
C4	FILTER4	Filter Channel 4
C5	FILTER5	Filter Channel 5
C6	FILTER6	Filter Channel 6

PACKAGE / PINOUT DIAGRAMS

Note: Lead-free devices are specified by using a "+" character for the top side orientation mark.

SPECIFICATIONS

Table 2. ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Units
Storage Temperature Range	-65 to +150	°C
DC Power per Resistor	100	mW
DC Package Power Rating	600	mW

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. STANDARD OPERATING CONDITIONS

Parameter	Rating	Units
Operating Temperature Range	-40 to +85	°C

Table 4. ELECTRICAL OPERATING CHARACTERISTICS (Note 1)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
R	Resistance		80	100	120	Ω
С	Capacitance	At 2.5 V DC	24	30	36	pF
TCR	Temperature Coefficient of Resistance			1200		ppm/°C
TCC	Temperature Coefficient of Capacitance	At 2.5 V DC		-300		ppm/°C
V _{DIODE}	Diode Voltage (reverse bias)	I _{DIODE} = 10 μA	5.5			V
I _{LEAK}	Diode Leakage Current (reverse bias)	V _{DIODE} = 3.3 V			100	nA
V _{SIG}	Signal Voltage Positive Clamp Negative Clamp	I _{LOAD} = 10 mA	5.6 -0.4	6.8 -0.8	9.0 -1.5	V
V _{ESD}	In-system ESD Withstand Voltage a) Human Body Model, MIL-STD-883, Method 3015 b) Contact Discharge per IEC 61000-4-2 Level 4	(Notes 2 and 4)	±30 ±15			kV
V _{CL}	Clamping Voltage during ESD Discharge MIL-STD-883 (Method 3015), 8 kV Positive Transients Negative Transients	(Notes 2, 3 and 4)		+10 -5		V
f _C	Cut–off frequency Z_{SOURCE} = 50 Ω , Z_{LOAD} = 50 Ω	R = 100 Ω, C = 30 pF		58		MHz

- T_A = 25°C unless otherwise specified.
 ESD applied to input and output pins with respect to GND, one at a time.
 Clamping voltage is measured at the opposite side of the EMI filter to the ESD pin. For example, if ESD is applied to Pin A1, then clamping voltage is measured at Pin C1.
- 4. Unused pins are left open.

PERFORMANCE INFORMATION

Figure 1. Insertion Loss vs. Frequency (A1-C1 to GND B2)

PERFORMANCE INFORMATION (Cont'd)

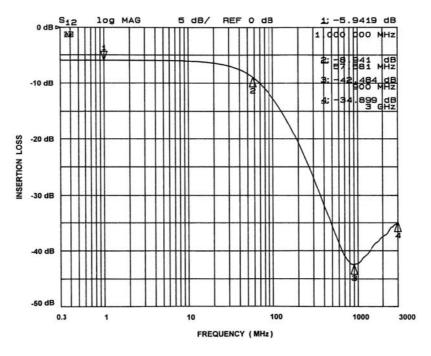


Figure 2. Insertion Loss vs. Frequency (A2-C2 to GND B2)

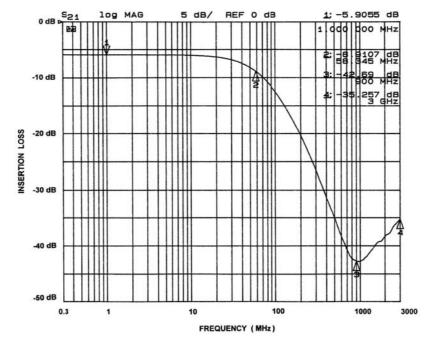


Figure 3. Insertion Loss vs. Frequency (A3-C3 to GND B2)

PERFORMANCE INFORMATION (Cont'd)

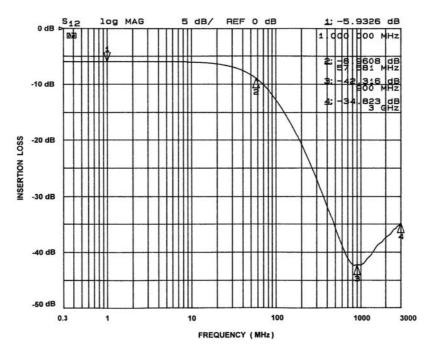


Figure 4. Insertion Loss vs. Frequency (A4-C4 to GND B2)

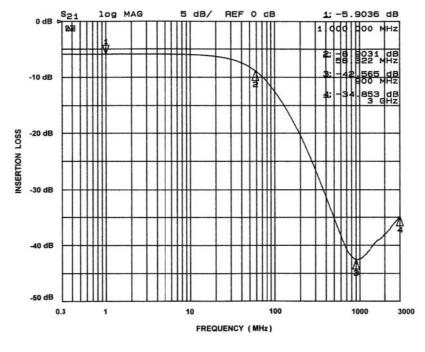


Figure 5. Insertion Loss vs. Frequency (A5-C5 to GND B2)

PERFORMANCE INFORMATION (Cont'd)

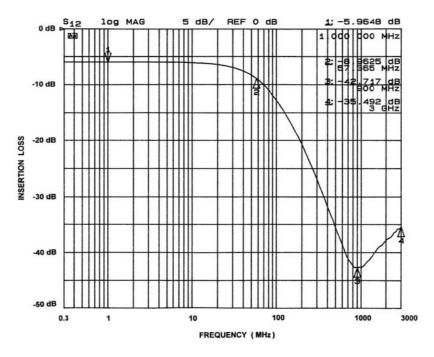


Figure 6. Insertion Loss vs. Frequency (A6-C6 to GND B2)

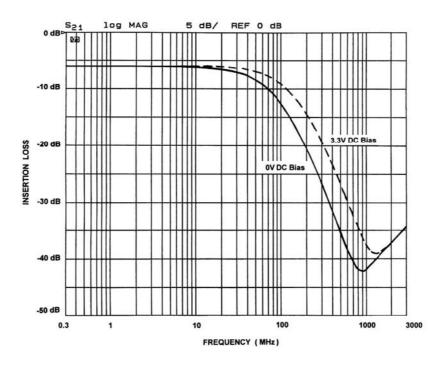


Figure 7. Comparison of Filter Response Curves for CSPEMI306A vs. DC Bias

PERFORMANCE INFORMATION (Cont'd)

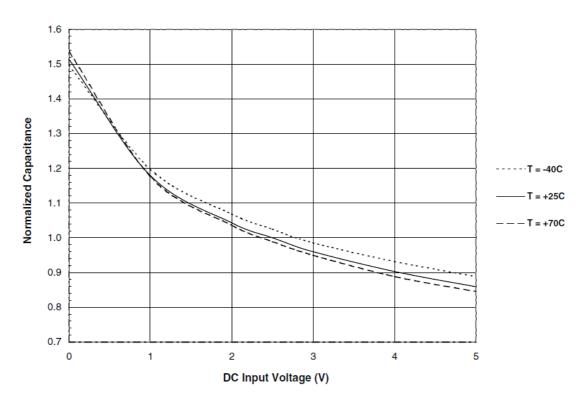


Figure 8. Filter Capacitance vs. Input Voltage over Temperature (normalized to capacitance at 2.5 VDC and 25°C)

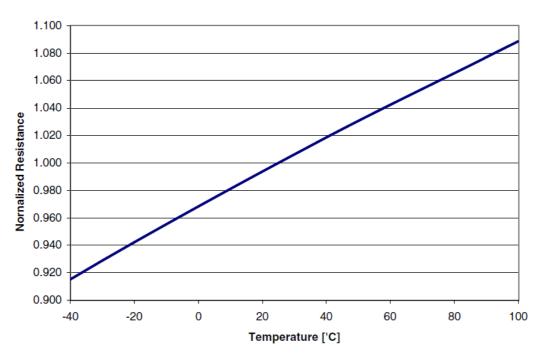


Figure 9. Resistance vs. Temperature (normalized to resistance at 25°C)

APPLICATION INFORMATION

Parameter	Value	
Pad Size on PCB	0.240 mm	
Pad Shape	Round	
Pad Definition	Non-Solder Mask defined pads	
Solder Mask Opening	0.290 mm Round	
Solder Stencil Thickness	0.125 mm – 0.150 mm	
Solder Stencil Aperture Opening (laser cut, 5% tapered walls)	0.300 mm Round	
Solder Flux Ratio	50/50 by volume	
Solder Paste Type	No Clean	
Pad Protective Finish	OSP (Entek Cu Plus 106A)	
Tolerance – Edge To Corner Ball	±50 μm	
Solder Ball Side Coplanarity	±20 μm	
Maximum Dwell Time Above Liquidous	60 seconds	
Maximum Soldering Temperature for Lead-free Devices using a Lead-free Solder Paste	260°C	

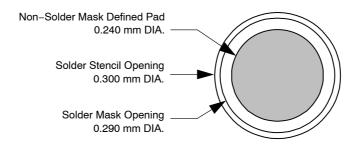


Figure 10. Recommended Non-Solder Mask Defined Pad Illustration

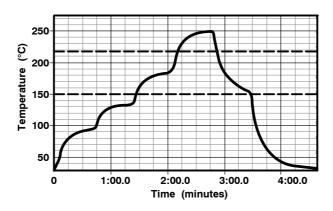
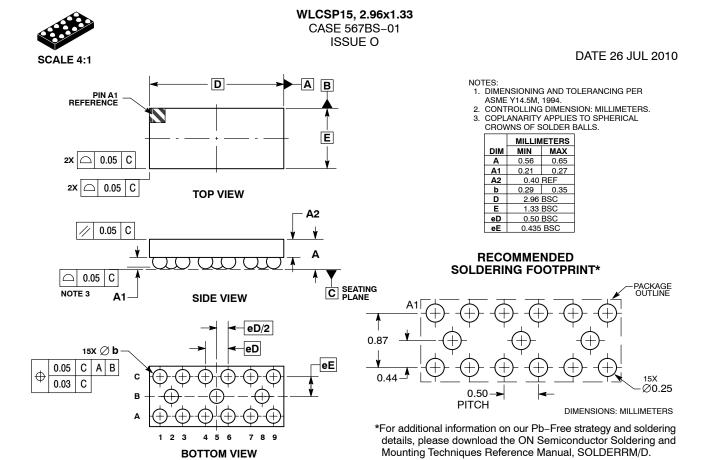



Figure 11. Lead-free (SnAgCu) Solder Ball Reflow Profile

DOCUMENT NUMBER:	98AON49826E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WLCSP15, 2.96X1.33		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative