nRF52820

Objective Product Specification

v0.7

Feature list

Features:

- Bluetooth 5.1, IEEE 802.15.4-2006, 2.4 GHz transceiver
 - -95 dBm sensitivity in 1 Mbps Bluetooth low energy mode
 - -103 dBm sensitivity in 125 kbps *Bluetooth* low energy mode (long range)
 - -20 to +8 dBm TX power, configurable in 4 dB steps
 - On-air compatible with nRF52, nRF51, nRF24L, and nRF24AP Series
 - Supported data rates:
 - Bluetooth 5.1 2 Mbps, 1 Mbps, 500 kbps, and 125 kbps
 - IEEE 802.15.4-2006 250 kbps
 - Proprietary 2.4 GHz 2 Mbps, 1 Mbps

 - Single-ended antenna output (on-chip balun)
 - 128-bit AES/ECB/CCM/AAR co-processor (on-the-fly packet encryption)
 - 4.9 mA peak current in TX (0 dBm)
 - 4.7 mA peak current in RX
 - RSSI (1 dB resolution)
- ARM Cortex -M4 32-bit processor, 64 MHz
 - 144 EEMBC CoreMark score running from flash memory
 - 52 μA/MHz running CoreMark from flash memory
 - 38 μA/MHz running CoreMark from RAM
 - Serial wire debug (SWD)
- Flexible power management
 - 1.7 V to 5.5 V supply voltage range
 - On-chip DC/DC and LDO regulators with automated low current modes
 - Automated peripheral power management
 - Fast wake-up using 64 MHz internal oscillator
 - 0.6 μ A at 3 V in System OFF mode, no RAM retention
 - 1.5 μA at 3 V in System ON mode, no RAM retention, wake on RTC

- 256 kB flash and 32 kB RAM
- Advanced on-chip interfaces
 - USB 2.0 full speed (12 Mbps) controller
 - Programmable peripheral interconnect (PPI)
 - 18 general purpose I/O pins
 - EasyDMA automated data transfer between memory and peripherals
- Nordic SoftDevice ready with support for concurrent multiprotocol
- 64 level comparator
- Temperature sensor
- 4x 32-bit timer with counter mode
- Up to 2x SPI master/slave with EasyDMA
- Up to 2x I²C compatible two-wire master/slave
- UART (CTS/RTS) with EasyDMA
- Quadrature decoder (QDEC)
- 2x real-time counter (RTC)
- Single crystal operation
- Operating temperature from -40 to 105 °C
- Package variants
 - QFN40 package, 5 x 5 mm

Applications:

- Advanced computer peripherals and I/O devices
 - Mouse
 - Keyboard
 - Multi-touch trackpad

- Internet of things (IoT)
 - Smart home sensors and controllers
 - Industrial IoT sensors and controllers
- Interactive entertainment devices
 - Remote controls
 - Gaming controllers

4463_014 v0.7 ii

Contents

	Feature list.	. ii
1	Revision history.	. 9
2	About this document.	11
	2.1 Document status	11 11
	2.3 Register tables	11
	2.3.1 Fields and values	12
	2.3.2 Permissions	. 12
	2.4 Registers	
	2.4.1 DUMMY	12
3	Block diagram.	14
4	Core components.	16
	4.1 CPU	. 16
	4.1.1 CPU and support module configuration	
	4.1.2 Electrical specification	17
	4.2 Memory	
	4.2.1 RAM - Random access memory	18
	4.2.2 Flash - Non-volatile memory	. 18 . 18
	4.2.4 Instantiation	20
	4.3 NVMC — Non-volatile memory controller	
	4.3.1 Writing to flash	
	4.3.2 Erasing a page in flash	21
	4.3.3 Writing to user information configuration registers (UICR)	21
	4.3.4 Erasing user information configuration registers (UICR)	
	4.3.5 Erase all	
	4.3.6 Access port protection behavior	
	4.3.7 NVMC power failure protection	22
	4.3.8 Partial erase of a page in flash	
	4.3.10 Electrical specification	
	4.4 FICR — Factory information configuration registers	
	4.4.1 Registers	
	4.5 UICR — User information configuration registers	
	4.5.1 Registers	. 35
	4.6 EasyDMA	39
	4.6.1 EasyDMA error handling	40
	4.6.2 EasyDMA array list	
	4.7 AHB multilayer	
	4.8 Debug	
	4.8.1 DAP - Debug access port	
	4.8.3 Debug interface mode	
	4.8.4 Real-time debug	

46

4463_014 v0.7 iii

	5.1 Power management unit (PMU)	. 46
	5.2 Current consumption	46
	5.2.1 Electrical specification	. 47
	5.3 POWER — Power supply	. 52
	5.3.1 Main supply	52
	5.3.2 USB supply	. 57
	5.3.3 System OFF mode	. 58
	5.3.4 System ON mode	. 59
	5.3.5 RAM power control	
	5.3.6 Reset	
	5.3.7 Registers	. 61
	5.3.8 Electrical specification	. 71
	5.4 CLOCK — Clock control	72
	5.4.1 HFCLK controller	
	5.4.2 LFCLK controller	
	5.4.3 Registers	
	5.4.4 Electrical specification	. 85
6	Peripherals	88
	6.1 Peripheral interface	
	6.1.1 Peripheral ID	
	·	
	6.1.2 Peripherals with shared ID	
	6.1.3 Peripheral registers	
	6.1.5 Tasks	
	6.1.6 Events	
	6.1.8 Interrupts	
	6.2.1 EasyDMA	
	6.2.2 Resolving a resolvable address	
	6.2.3 Use case example for chaining RADIO packet reception with address resolution using AAR	
	6.2.4 IRK data structure	
	6.2.5 Registers	
	6.2.6 Electrical specification	
	6.3 ACL — Access control lists	
	6.3.1 Registers	
	6.4.1 Key-steam generation	
	6.4.2 Encryption	100
	6.4.3 Decryption	101
	6.4.4 AES CCM and RADIO concurrent operation	101
	6.4.5 Encrypting packets on-the-fly in radio transmit mode	
	6.4.6 Decrypting packets on-the-fly in radio receive mode	102
	6.4.7 CCM data structure	
	6.4.8 EasyDMA and ERROR event	105
	6.4.9 Registers	105
	6.4.10 Electrical specification	112
	6.5 COMP — Comparator	
	6.5.1 Differential mode	
	6.5.2 Single-ended mode	
	6.5.3 Registers	114
	6.5.4 Electrical specification	
	6.6 ECB — AES electronic codebook mode encryption	

4463_014 v0.7 iv

6.6.1 Shared resources	124
6.6.2 EasyDMA	124
6.6.3 ECB data structure	124
	124
6.6.5 Electrical specification	127
	127
	128
	130
	130
	131
	133
ě	137
	138
	138
	139
	139
	140
	140
·	
	144
	145
	146
	151
	151
·	152
	152
	153
' ' ! !	153
6	154
6.11.7 Registers	154
· ·	165
6.12 RADIO — 2.4 GHz radio	165
6.12.1 Packet configuration	166
6.12.2 Address configuration	167
	168
	168
6.12.5 Radio states	169
	169
	171
	172
	172
	173
	174
	174
	179
	188
	189
	224
	230
-	230
•	231
	231
·	233
	233
6.14.1 Clock source	234

4463_014 v0.7 V

6.14.2 Resolution versus overflow and the PRESCALER	
6.14.3 COUNTER register	235
6.14.4 Overflow features	 235
6.14.5 TICK event	235
6.14.6 Event control feature	236
6.14.7 Compare feature	236
6.14.8 TASK and EVENT jitter/delay	 238
6.14.9 Reading the COUNTER register	240
6.14.10 Registers	241
6.14.11 Electrical specification	 246
6.15 SPI — Serial peripheral interface master	246
6.15.1 Functional description	246
6.15.2 Registers	249
6.15.3 Electrical specification	253
6.16 SPIM — Serial peripheral interface master with EasyDMA	254
6.16.1 SPI master transaction sequence	254
6.16.2 Pin configuration	255
6.16.3 EasyDMA	256
6.16.4 Low power	257
6.16.5 Registers	
6.16.6 Electrical specification	265
6.17 SPIS — Serial peripheral interface slave with EasyDMA	
6.17.1 Shared resources	267
6.17.2 EasyDMA	
6.17.3 SPI slave operation	268
6.17.4 Pin configuration	270
6.17.5 Registers	270
6.17.6 Electrical specification	281
6.18 SWI — Software interrupts	283
	283
6.18.1 Registers	283
6.19 TEMP — Temperature sensor	
6.19.1 Registers	
6.19.2 Electrical specification	289
6.20 TWI — I^2C compatible two-wire interface	
6.20.1 Functional description	290
6.20.2 Master mode pin configuration	290
6.20.3 Shared resources	291
6.20.4 Master write sequence	291
6.20.5 Master read sequence	292
6.20.6 Master repeated start sequence	293
6.20.7 Low power	294
6.20.8 Registers	294
6.20.9 Electrical specification	301
6.21 TIMER — Timer/counter	 302
6.21.1 Capture	304
6.21.2 Compare	304
6.21.3 Task delays	304
6.21.4 Task priority	304
6.21.5 Registers	304
6.22 TWIM — I^2C compatible two-wire interface master with EasyDMA	 309
6.22.1 EasyDMA	 310
6.22.2 Master write sequence	 311
6.22.3 Master read sequence	312
6.22.4 Master repeated start sequence	 313

4463_014 v0.7 vi

	6.22.5 Low power	314
	6.22.6 Master mode pin configuration	314
	6.22.7 Registers	314
	6.22.8 Electrical specification	325
	6.22.9 Pullup resistor	326
6.	23 TWIS $-$ I 2 C compatible two-wire interface slave with EasyDMA	326
	6.23.1 EasyDMA	329
	6.23.2 TWI slave responding to a read command	
	6.23.3 TWI slave responding to a write command	
	6.23.4 Master repeated start sequence	
	6.23.5 Terminating an ongoing TWI transaction	
	6.23.6 Low power	
	6.23.7 Slave mode pin configuration	332
	6.23.8 Registers	333
	6.23.9 Electrical specification	343
_	24 UART — Universal asynchronous receiver/transmitter	343
Ο.	6.24.1 Functional description	343
	6.24.2 Pin configuration	344
	6.24.3 Shared resources	344
	6.24.4 Transmission	344
	6.24.5 Reception	345
	6.24.6 Suspending the UART	346
	6.24.7 Error conditions	346
	6.24.8 Using the UART without flow control	346
	6.24.9 Parity and stop bit configuration	346
	6.24.10 Registers	346
	6.24.11 Electrical specification	355
6.	25 UARTE — Universal asynchronous receiver/transmitter with EasyDMA	355
	6.25.1 EasyDMA	356
	6.25.2 Transmission	356
	6.25.3 Reception	357
	6.25.4 Error conditions	359
	6.25.5 Using the UARTE without flow control	359
	6.25.6 Parity and stop bit configuration	359
	6.25.7 Low power	359
	6.25.8 Pin configuration	360
	6.25.9 Registers	360
	6.25.10 Electrical specification	373
6.	26 USBD — Universal serial bus device	373
	6.26.1 USB device states	374
	6.26.2 USB terminology	375
	6.26.3 USB pins	376
	6.26.4 USBD power-up sequence	376
	6.26.5 USB pull-up	377
	6.26.6 USB reset	377
	6.26.7 USB suspend and resume	378
	6.26.8 EasyDMA	379
	6.26.9 Control transfers	380
	0.20.5 Condition during Clark	-
	6.26.10 Bulk and interrupt transactions	
	6.26.10 Bulk and interrupt transactions	383
	6.26.11 Isochronous transactions	383 386
	6.26.11 Isochronous transactions	383 386 388
	6.26.11 Isochronous transactions	383 386 388 389
	6.26.11 Isochronous transactions	383 386 388

4463_014 v0.7 vii

	6.27.1 Reload criteria	414
	6.27.2 Temporarily pausing the watchdog	414
	6.27.3 Watchdog reset	. 414
	6.27.4 Registers	. 414
	6.27.5 Electrical specification	417
7	Hardware and layout.	418
	7.1 Pin assignments	418
	7.1.1 QFN40 pin assignments	418
	7.2 Mechanical specifications	420
	7.2.1 QFN40 5 x 5 mm package	420
	7.3 Reference circuitry	421
	7.3.1 Circuit configuration no. 1 for QDAA QFN40	. 421
	7.3.2 Circuit configuration no. 2 for QDAA QFN40	. 423
	7.3.3 Circuit configuration no. 3 for QDAA QFN40	. 425
	7.3.4 Circuit configuration no. 4 for QDAA QFN40	. 427
	7.3.5 PCB guidelines	. 429
	7.3.6 PCB layout example	. 430
	7.4 Package thermal characteristics	431
8	Recommended operating conditions.	433
	8.1 Extended Operating Temperature	. 433
9	Absolute maximum ratings.	434
9	Absolute maximum rutings.	757
10	Ordering information.	435
	10.1 IC marking	. 435
	10.2 Box labels	
	10.3 Order code	436
	10.4 Code ranges and values	437
	10.5 Product options	438
11	Legal notices.	440

4463_014 v0.7 viii

1 Revision history

Date	Version	Description
March 2020	0.7	The following content has been added or updated:
	•	
		Current consumption on page 46 - Updated values and graphs. POWER - Province and the province of the pro
		POWER — Power supply on page 52 - Corrected REG0 electrical Properties: Clarified REG0 regulator maximum output voltage. Corrected. Properties: Clarified REG0 regulator maximum output voltage. Corrected.
		parameters. Clarified REGO regulator maximum output voltage. Corrected RAMSTATUS register with appropriate number of fields.
		CLOCK — Clock control on page 72 - Added parameter f _{TOL_HFINT,EXT} . Add 22 Mbs parable as a fifteeting a control of the parable transfer of the
		Made 32 Mhz crystal specification according to crystal characteristics and
		not crystal examples.
		NVMC — Non-volatile memory controller on page 21 - Added
		behavior description when POFWARN is active.
		COMP — Comparator on page 112 - Added electrical parameter
		E _{VDDH_DIV5} .
		RADIO — 2.4 GHz radio on page 165 - Marked EDSAMPLE register as
		read-only. Updated descriptions of TSWITCHOFFSET and TSAMPLEOFFSET
		fields in register DFECTRL2. Documented PHYEND event for RX
		transactions. Clarified REPEATPATTERN functionality. Updated output
		power and sensitivity figures. Added SYNC event. Updated electrical
		parameters with test results. Corrected description of E _{VM} parameter.
		SPIM — Serial peripheral interface master with EasyDMA on page 25.4 Description of the CTALISTAT Representations 26.4 Description of the CTALISTAT Representation of the CTALISTAT Representat
		254 - Removed non-existing register STALLSTAT. Removed register
		STALLSTAT.Corrected value for parameter f _{SPIM} .
		SPIS — Serial peripheral interface slave with EasyDMA on page 266 -
		Relaxed parameter t _{SPIS,HCSN} .
		USBD — Universal serial bus device on page 373 - Improved
		description of power-down sequence. Moved current electrical
		specifications to Current consumption on page 46.
		Pin assignments on page 418 - Added information about low frequency
		GPIOs. Updated DEC1 reference voltage.
		Mechanical specifications on page 420 - Added minimum and
		maximum values for the D and E dimensions for the QFN40 package.
		Corrected QFN40 package drawing, since A dimension (Total Thickness)
		includes A1 dimension (Stand Off).
		Reference circuitry on page 421 - Added several configurations
		and corresponding schematics. Added optional resitor in supply for
		Configuration 1.
		Package thermal characteristics on page 431 - Added section.
		Recommended operating conditions on page 433 - Added parameter
		T _J (juntion temperature). Added section about Extended Temperature
		Conditions operation.
		Absolute maximum ratings on page 434 - Updated Environmental
		QFN40 package values. Updated ESD values according to test. Expanded
		Flash memory section with different parameters. Added footnote
		regarding supply voltages used in HTOL.
		Ordering information on page 435 - Updated Minimum Order Quantity
		(MOQ). Corrected Order Code.

Legal notices on page 440 - Updated copyright date.

Date	Version	Description
October 2019	0.5	Preliminary version

2 About this document

This document is organized into chapters that are based on the modules and peripherals available in the IC

2.1 Document status

The document status reflects the level of maturity of the document.

Document name	Description	
Objective Product Specification (OPS)	Applies to document versions up to 1.0. This document contains target specifications for product development.	
Product Specification (PS)	Applies to document versions 1.0 and higher. This document contains final product specifications. Nordic Semiconductor ASA reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.	

Table 1: Defined document names

2.2 Peripheral chapters

Every peripheral has a unique capitalized name or an abbreviation of its name, e.g. TIMER, used for identification and reference. This name is used in chapter headings and references, and it will appear in the ARM® Cortex® Microcontroller Software Interface Standard (CMSIS) hardware abstraction layer to identify the peripheral.

The peripheral instance name, which is different from the peripheral name, is constructed using the peripheral name followed by a numbered postfix, starting with 0, for example, TIMERO. A postfix is normally only used if a peripheral can be instantiated more than once. The peripheral instance name is also used in the CMSIS to identify the peripheral instance.

The chapters describing peripherals may include the following information:

- A detailed functional description of the peripheral
- Register configuration for the peripheral
- Electrical specification tables, containing performance data which apply for the operating conditions described in Recommended operating conditions on page 433.

2.3 Register tables

Individual registers are described using register tables. These tables are built up of two sections. The first three colored rows describe the position and size of the different fields in the register. The following rows describe the fields in more detail.

2.3.1 Fields and values

The **Id** (**Field Id**) row specifies the bits that belong to the different fields in the register. If a field has enumerated values, then every value will be identified with a unique value id in the **Value Id** column.

A blank space means that the field is reserved and read as undefined, and it also must be written as 0 to secure forward compatibility. If a register is divided into more than one field, a unique field name is specified for each field in the **Field** column. The **Value Id** may be omitted in the single-bit bit fields when values can be substituted with a Boolean type enumerator range, e.g. true/false, disable(d)/enable(d), on/off, and so on.

Values are usually provided as decimal or hexadecimal. Hexadecimal values have a 0x prefix, decimal values have no prefix.

The Value column can be populated in the following ways:

- Individual enumerated values, for example 1, 3, 9.
- Range of values, e.g. [0..4], indicating all values from and including 0 and 4.
- Implicit values. If no values are indicated in the **Value** column, all bit combinations are supported, or alternatively the field's translation and limitations are described in the text instead.

If two or more fields are closely related, the **Value Id**, **Value**, and **Description** may be omitted for all but the first field. Subsequent fields will indicate inheritance with '..'.

A feature marked **Deprecated** should not be used for new designs.

2.3.2 Permissions

Different fields in a register might have different access permissions enforced by hardware.

The access permission for each register field is documented in the Access column in the following ways:

Access	Description	Hardware behavior	
RO	Read-only	Field can only be read. A write will be ignored.	
wo	Write-only	Field can only be written. A read will return an undefined value.	
RW	Read-write	Field can be read and written multiple times.	
W1	Write-once	Field can only be written once per reset. Any subsequent write will be ignored. A read will return an undefined value.	
RW1	Read-write-once Field can be read multiple times, but only written once per reset. Any subsequent write will be ignored.		

Table 2: Register field permission schemes

2.4 Registers

Register	Offset	Description	
DUMMY	0x514	Example of a register controlling a dummy feature	

Table 3: Register overview

2.4.1 DUMMY

Address offset: 0x514

Example of a register controlling a dummy feature

Bit r	umber		31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			D D I	D C C C B A A
Res	et 0x00050002		0 0 0 0 0 0	0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
Α	RW FIELD_A			Example of a read-write field with several enumerated
				values
		Disabled	0	The example feature is disabled
		NormalMode	1	The example feature is enabled in normal mode
		ExtendedMode	2	The example feature is enabled along with extra
				functionality
В	RW FIELD_B			Example of a deprecated read-write field Deprecated
		Disabled	0	The override feature is disabled
		Enabled	1	The override feature is enabled
С	RW FIELD_C			Example of a read-write field with a valid range of values
		ValidRange	[27]	Example of allowed values for this field
D	RW FIELD_D			Example of a read-write field with no restriction on the
				values

3 Block diagram

This block diagram illustrates the overall system. Arrows with white heads indicate signals that share physical pins with other signals.

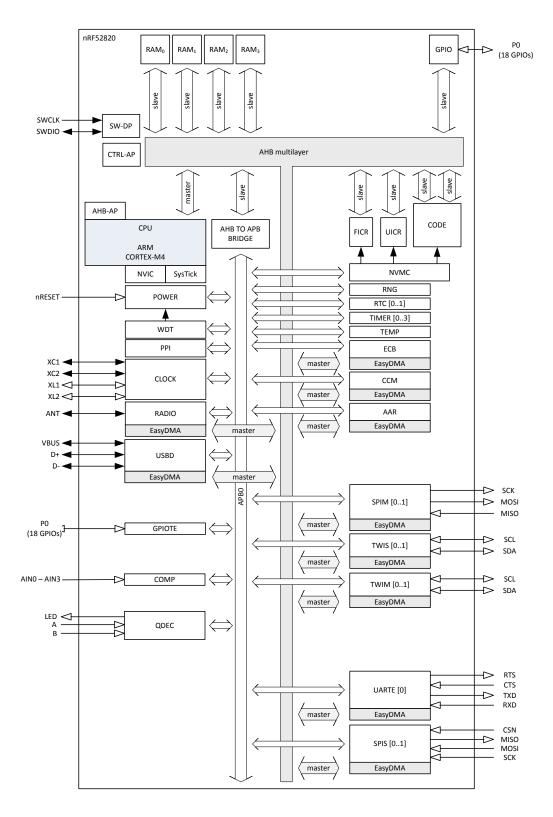


Figure 1: Block diagram

4 Core components

4.1 CPU

The ARM[®] Cortex[®]-M4 processor has a 32-bit instruction set (Thumb[®]-2 technology) that implements a superset of 16- and 32-bit instructions to maximize code density and performance.

This processor implements the following features that enable energy-efficient arithmetic and high-performance signal processing.

- Digital signal processing (DSP) instructions
- Single-cycle multiply and accumulate (MAC) instructions
- Hardware divide
- 8- and 16-bit single instruction multiple data (SIMD) instructions

The ARM[®] Cortex[®] Microcontroller Software Interface Standard (CMSIS) hardware abstraction layer for the ARM[®] Cortex[®] processor series is implemented and available for the M4 CPU.

Real-time execution is highly deterministic in thread mode, to and from sleep modes, and when handling events at configurable priority levels via the nested vectored interrupt controller (NVIC).

Executing code from flash memory will have a wait state penalty on the nRF52 Series. The Electrical specification on page 17 shows CPU performance parameters including wait states in different modes, CPU current and efficiency, and processing power and efficiency based on the CoreMark® benchmark.

The ARM system timer (SysTick) is present on nRF52820. The SysTick's clock will only tick when the CPU is running or when the system is in debug interface mode.

4.1.1 CPU and support module configuration

The ARM® Cortex®-M4 processor has a number of CPU options and support modules implemented on the IC.

Option / Module	Description	Implemented
Core options		
NVIC	Nested vector interrupt controller	48 vectors
PRIORITIES	Priority bits	3
WIC	Wakeup interrupt controller	NO
Endianness	Memory system endianness	Little endian
Bit-banding	Bit banded memory	NO
DWT	Data watchpoint and trace	NO
SysTick	System tick timer	YES
Modules		
MPU	Memory protection unit	YES
FPU	Floating-point unit	NO
DAP	Debug access port	YES
ETM	Embedded trace macrocell	NO
ITM	Instrumentation trace macrocell	NO
TPIU	Trace port interface unit	NO
ЕТВ	Embedded trace buffer	NO
FPB	Flash patch and breakpoint unit	YES
нтм	AMBA [™] AHB trace macrocell	NO

4.1.2 Electrical specification

4.1.2.1 CPU performance

The CPU clock speed is 64 MHz. Current and efficiency data is taken when in System ON and the CPU is executing the CoreMark[®] benchmark. It includes power regulator and clock base currents. All other blocks are IDLE.

Symbol	Description	Min.	Тур.	Max.	Units
W _{FLASH}	CPU wait states, running CoreMark from flash			2	
W_{RAM}	CPU wait states, running CoreMark from RAM			0	
CM_{FLASH}	CoreMark, running CoreMark from flash		144		CoreMark
CM _{FLASH/MHz}	CoreMark per MHz, running CoreMark from flash		2.25		Corel
					MHz
CM _{FLASH/mA}	CoreMark per mA, running CoreMark from flash, DCDC 3V		39		CoreMark/
					mA

4.2 Memory

The nRF52820 contains 256 kB of flash memory and 32 kB of RAM that can be used for code and data storage.

The CPU and peripherals with EasyDMA can access memory via the AHB multilayer interconnect. In additon, peripherals are accessed by the CPU via the AHB multilayer interconnect, as shown in the following figure.

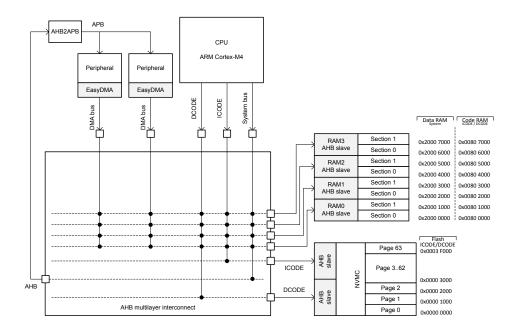


Figure 2: Memory layout

See AHB multilayer on page 41 and EasyDMA on page 39 for more information about the AHB multilayer interconnect and EasyDMA.

The same physical RAM is mapped to both the Data RAM region and the Code RAM region. It is up to the application to partition the RAM within these regions so that one does not corrupt the other.

4.2.1 RAM - Random access memory

The RAM interface is divided into four RAM AHB slaves.

RAM AHB slaves 0 to 3 are connected to two 4 kB RAM sections each, as shown in Memory layout on page 17.

Each RAM section has separate power control for System ON and System OFF mode operation, which is configured via RAM register (see the POWER — Power supply on page 52).

4.2.2 Flash - Non-volatile memory

The CPU can read from flash memory an unlimited number of times, but is restricted in how it writes to flash and the number of writes and erases it can perform.

Writing to flash memory is managed by the non-volatile memory controller (NVMC), see NVMC — Non-volatile memory controller on page 21.

Flash memory is divided into 64 pages of 4 kB each that can be accessed by the CPU via the ICODE and DCODE buses as shown in Memory layout on page 17.

4.2.3 Memory map

The complete memory map for the nRF52820 is shown in the following figure. As described in Memory on page 17, Code RAM and Data RAM are the same physical RAM.

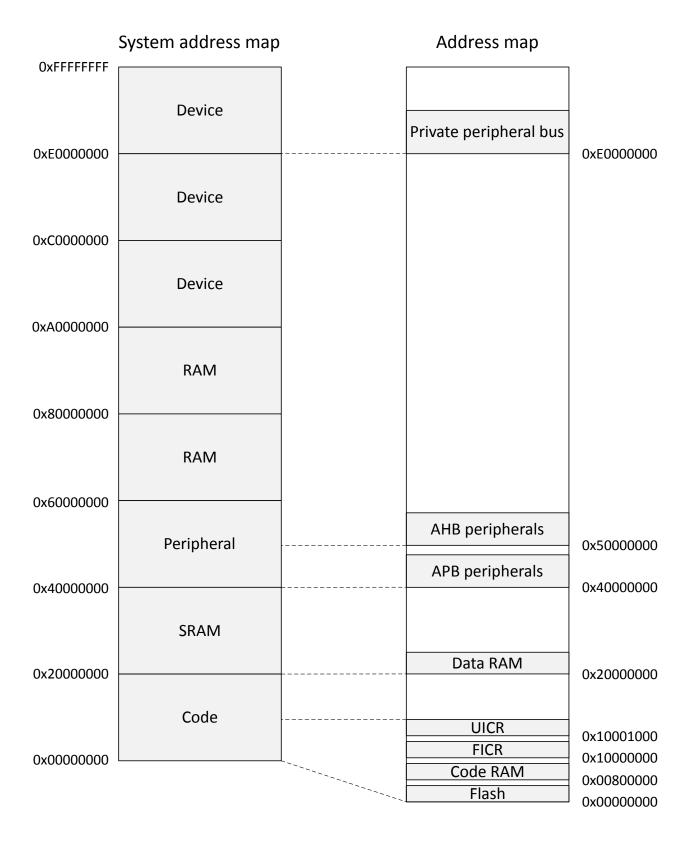


Figure 3: Memory map

4.2.4 Instantiation

ID	Base address	Peripheral	Instance	Description	
0	0x40000000	CLOCK	CLOCK	Clock control	
0	0x40000000	POWER	POWER	Power control	
0	0x50000000	GPIO	GPIO	General purpose input and output	Deprecated
0	0x50000000	GPIO	P0	General purpose input and output, port 0.	
1	0x40001000	RADIO	RADIO	2.4 GHz radio	
2	0x40002000	UART	UART0	Universal asynchronous receiver/transmitter	Deprecated
2	0x40002000	UARTE	UARTE0	Universal asynchronous receiver/transmitter with EasyDMA,	
				unit 0	
3	0x40003000	SPI	SPI0	SPI master 0	Deprecated
3	0x40003000	SPIM	SPIM0	SPI master 0	
3	0x40003000	SPIS	SPIS0	SPI slave 0	
3	0x40003000	TWI	TWI0	Two-wire interface master 0	Deprecated
3	0x40003000	TWIM	TWIM0	Two-wire interface master 0	
3	0x40003000	TWIS	TWIS0	Two-wire interface slave 0	
4	0x40004000	SPI	SPI1	SPI master 1	Deprecated
4	0x40004000	SPIM	SPIM1	SPI master 1	
4	0x40004000	SPIS	SPIS1	SPI slave 1	
4	0x40004000	TWI	TWI1	Two-wire interface master 1	Deprecated
4	0x40004000	TWIM	TWIM1	Two-wire interface master 1	
4	0x40004000	TWIS	TWIS1	Two-wire interface slave 1	
6	0x40006000	GPIOTE	GPIOTE	GPIO tasks and events	
8	0x40008000	TIMER	TIMER0	Timer 0	
9	0x40009000	TIMER	TIMER1	Timer 1	
10	0x4000A000	TIMER	TIMER2	Timer 2	
11	0x4000B000	RTC	RTC0	Real-time counter 0	
12	0x4000C000	TEMP	TEMP	Temperature sensor	
13	0x4000D000	RNG	RNG	Random number generator	
14	0x4000E000	ECB	ECB	AES electronic code book (ECB) mode block encryption	
15	0x4000F000	AAR	AAR	Accelerated address resolver	
15	0x4000F000	CCM	CCM	AES counter with CBC-MAC (CCM) mode block encryption	
16	0x40010000	WDT	WDT	Watchdog timer	
17	0x40011000	RTC	RTC1	Real-time counter 1	
18	0x40012000	QDEC	QDEC	Quadrature decoder	
19	0x40013000	COMP	COMP	General purpose comparator	
20	0x40014000	EGU	EGU0	Event generator unit 0	
20	0x40014000	SWI	SWI0	Software interrupt 0	
21	0x40015000	EGU	EGU1	Event generator unit 1	
21	0x40015000	SWI	SWI1	Software interrupt 1	
22	0x40016000	EGU	EGU2	Event generator unit 2	
22	0x40016000	SWI	SWI2	Software interrupt 2	
23	0x40017000	EGU	EGU3	Event generator unit 3	
23	0x40017000	SWI	SWI3	Software interrupt 3	
24	0x40018000	EGU	EGU4	Event generator unit 4	
24	0x40018000	SWI	SWI4	Software interrupt 4	
25	0x40019000	EGU	EGU5	Event generator unit 5	
25	0x40019000	SWI	SWI5	Software interrupt 5	
26	0x4001A000	TIMER	TIMER3	Timer 3	
30	0x4001E000	ACL	ACL	Access control lists	
30	0x4001E000	NVMC	NVMC	Non-volatile memory controller	
31	0x4001F000	PPI	PPI	Programmable peripheral interconnect	

ID	Base address	Peripheral	Instance	Description
39	0x40027000	USBD	USBD	Universal serial bus device
N/A	0x10000000	FICR	FICR	Factory information configuration
N/A	0x10001000	UICR	UICR	User information configuration

Table 4: Instantiation table

4.3 NVMC — Non-volatile memory controller

The non-volatile memory controller (NVMC) is used for writing and erasing of the internal flash memory and the UICR (user information configuration registers).

The CONFIG on page 23 is used to enable the NVMC for writing (CONFIG.WEN = Wen) and erasing (CONFIG.WEN = Een).

The CPU must be halted before initiating a NVMC operation from the debug system.

4.3.1 Writing to flash

When write is enabled, full 32-bit words can be written to word-aligned addresses in flash memory.

As illustrated in Memory on page 17, the flash is divided into multiple pages. The same 32-bit word in flash memory can only be written n written

The NVMC is only able to write 0 to bits in flash memory that are erased (set to 1). It cannot rewrite a bit back to 1. Only full 32-bit words can be written to flash memory using the NVMC interface. To write less than 32 bits, write the data as a full 32-bit word and set all the bits that should remain unchanged in the word to 1. The restriction on the number of writes (n_{WRITE}) still applies in this case.

Only word-aligned writes are allowed. Byte or half-word-aligned writes will result in a hard fault.

The time it takes to write a word to flash is specified by t_{WRITE} . The CPU is halted if the CPU executes code from the flash while the NVMC is writing to the flash.

NVM writing time can be reduced by using READYNEXT. If this status bit is set to 1, code can perform the next data write to the flash. This write will be buffered and will be taken into account as soon as the ongoing write operation is completed.

4.3.2 Erasing a page in flash

When erase is enabled, the flash memory can be erased page by page using the ERASEPAGE on page 24.

After erasing a flash page, all bits in the page are set to 1. The time it takes to erase a page is specified by $t_{\text{ERASEPAGE}}$. The CPU is halted if the CPU executes code from the flash while the NVMC is writing to the flash.

See Partial erase of a page in flash on page 22 for information on dividing the page erase time into shorter chunks.

4.3.3 Writing to user information configuration registers (UICR)

User information configuration registers (UICR) are written in the same way as flash. After UICR has been written, the new UICR configuration will only take effect after a reset.

UICR can only be written n_{WRITE} number of times before an erase must be performed using ERASEUICR on page 25 or ERASEALL on page 24. The time it takes to write a word to UICR is specified by t_{WRITE} . The CPU is halted if the CPU executes code from the flash while the NVMC is writing to the UICR.

4.3.4 Erasing user information configuration registers (UICR)

When erase is enabled, UICR can be erased using the ERASEUICR on page 25.

After erasing UICR, all bits in UICR are set to 1. The time it takes to erase UICR is specified by $t_{\text{ERASEPAGE}}$. The CPU is halted if the CPU executes code from the flash while the NVMC performs the erase operation.

4.3.5 Erase all

When erase is enabled, flash and UICR can be erased completely in one operation by using the ERASEALL on page 24. This operation will not erase the factory information configuration registers (FICR).

The time it takes to perform an ERASEALL command is specified by t_{ERASEALL}. The CPU is halted if the CPU executes code from the flash while the NVMC performs the erase operation.

4.3.6 Access port protection behavior

When access port protection is enabled, parts of the NVMC functionality will be blocked in order to prevent intentional or unintentional erase of UICR.

	CTRL-AP ERASEAL	L NVMC ERASEPAGE	NVMC ERASEPAGE	NVMC ERASEALL	NVMC ERASEUICR
			PARTIAL		
APPROTECT					
Disabled	Allowed	Allowed	Allowed	Allowed	Allowed
Enabled	Allowed	Allowed	Allowed	Allowed	Blocked

Table 5: NVMC Protection

4.3.7 NVMC power failure protection

NVMC power failure protection is possible through use of power-fail comparator that is monitoring power supply.

If the power-fail comparator is enabled, and the power supply voltage is below V_{POF} threshold, the power-fail comparator will prevent the NVMC from performing erase or write operations in non-volatile memory (NVM).

If a power failure warning is present at the start of an NVM erase operation, the NVMC operation will be ignored.

If a power failure warning is present at the start of an NVM write operation, the CPU will hardfault.

4.3.8 Partial erase of a page in flash

Partial erase is a feature in the NVMC to split a page erase time into shorter chunks to prevent longer CPU stalls in time-critical applications. Partial erase is only applicable to the code area in flash memory and does not work with UICR.

When erase is enabled, the partial erase of a flash page can be started by writing to ERASEPAGEPARTIAL on page 25. The duration of a partial erase can be configured in ERASEPAGEPARTIALCFG on page 26. A flash page is erased when its erase time reaches $t_{\text{ERASEPAGE}}$. Use ERASEPAGEPARTIAL N number of times so that N * ERASEPAGEPARTIALCFG $\geq t_{\text{ERASEPAGE}}$, where N * ERASEPAGEPARTIALCFG gives the cumulative (total) erase time. Every time the cumulative erase time reaches $t_{\text{ERASEPAGE}}$, it counts as one erase cycle.

After the erase is complete, all bits in the page are set to 1. The CPU is halted if the CPU executes code from the flash while the NVMC performs the partial erase operation.

The bits in the page are undefined if the flash page erase is incomplete, i.e. if a partial erase has started but the total erase time is less than $t_{\text{ERASEPAGE}}$.

4.3.9 Registers

Base address	Peripheral	Instance	Description	Configuration
0x4001E000	NVMC	NVMC	Non-volatile memory controller	

Table 6: Instances

Register	Offset	Description	
READY	0x400	Ready flag	
READYNEXT	0x408	Ready flag	
CONFIG	0x504	Configuration register	
ERASEPAGE	0x508	Register for erasing a page in code area	
ERASEPCR1	0x508	Register for erasing a page in code area, equivalent to ERASEPAGE	Deprecated
ERASEALL	0x50C	Register for erasing all non-volatile user memory	
ERASEPCR0	0x510	Register for erasing a page in code area, equivalent to ERASEPAGE	Deprecated
ERASEUICR	0x514	Register for erasing user information configuration registers	
ERASEPAGEPARTIAL	0x518	Register for partial erase of a page in code area	
ERASEPAGEPARTIALCFG	0x51C	Register for partial erase configuration	

Table 7: Register overview

4.3.9.1 READY

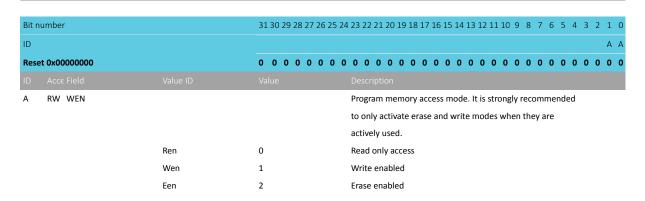
Address offset: 0x400

Ready flag

Bit number		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			А
Reset 0x00000001		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A R READY			NVMC is ready or busy
	Busy	0	NVMC is busy (on-going write or erase operation)
	Ready	1	NVMC is ready

4.3.9.2 READYNEXT

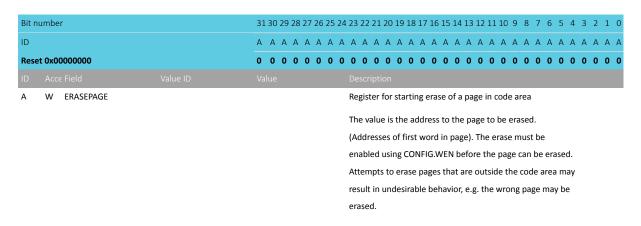
Address offset: 0x408


Ready flag

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				Α
Rese	t 0x0000001		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	R READYNEXT			NVMC can accept a new write operation
		Busy	0	NVMC cannot accept any write operation
		Ready	1	NVMC is ready

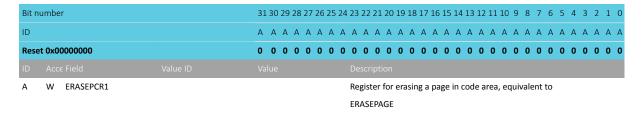
4.3.9.3 CONFIG

Address offset: 0x504 Configuration register



4.3.9.4 ERASEPAGE

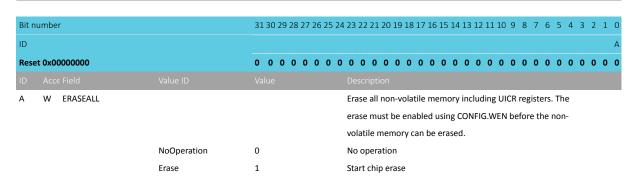
Address offset: 0x508


Register for erasing a page in code area

4.3.9.5 ERASEPCR1 (Deprecated)

Address offset: 0x508

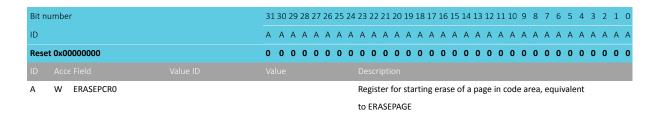
Register for erasing a page in code area, equivalent to ERASEPAGE



4.3.9.6 **ERASEALL**

Address offset: 0x50C

Register for erasing all non-volatile user memory



4.3.9.7 ERASEPCRO (Deprecated)

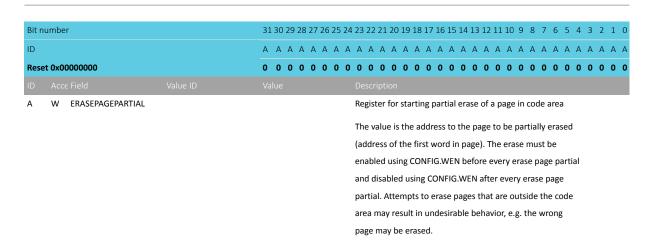
Address offset: 0x510


Register for erasing a page in code area, equivalent to ERASEPAGE

4.3.9.8 ERASEUICR

Address offset: 0x514

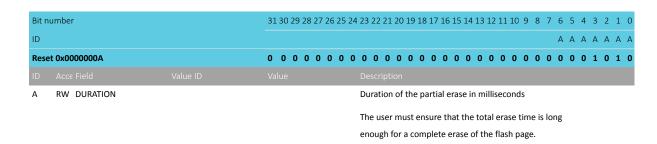
Register for erasing user information configuration registers



4.3.9.9 ERASEPAGEPARTIAL

Address offset: 0x518

Register for partial erase of a page in code area



4.3.9.10 ERASEPAGEPARTIALCFG

Address offset: 0x51C

Register for partial erase configuration

4.3.10 Electrical specification

4.3.10.1 Flash programming

Symbol	Description	Min.	Тур.	Max.	Units
n _{WRITE}	Number of times a 32-bit word can be written before erase			2	
n _{ENDURANCE}	Erase cycles per page	10000			
t _{WRITE}	Time to write one 32-bit word			42.5 ¹	μs
t _{ERASEPAGE}	Time to erase one page			87.5 ¹	ms
t _{ERASEALL}	Time to erase all flash			173 ¹	ms
$t_{ERASEPAGEPARTIAL,acc}$	Accuracy of the partial page erase duration. Total			1.09 ¹	
	execution time for one partial page erase is defined as				
	ERASEPAGEPARTIALCFG * terasepagepartial,acc-				

4.4 FICR — Factory information configuration registers

Factory information configuration registers (FICR) are pre-programmed in factory and cannot be erased by the user. These registers contain chip-specific information and configuration.

¹ Applies when HFXO is used. Timing varies according to HFINT accuracy when HFINT is used.

4.4.1 Registers

Base address	Peripheral	Instance	Description	Configuration
0x10000000	FICR	FICR	Factory information configuration	

Table 8: Instances

Register	Offset	Description	
CODEPAGESIZE	0x010	Code memory page size	
CODESIZE	0x014	Code memory size	
DEVICEID[0]	0x060	Device identifier	
DEVICEID[1]	0x064	Device identifier	
ER[0]	0x080	Encryption root, word 0	
ER[1]	0x084	Encryption root, word 1	
ER[2]	0x088	Encryption root, word 2	
ER[3]	0x08C	Encryption root, word 3	
IR[0]	0x090	Identity Root, word 0	
IR[1]	0x094	Identity Root, word 1	
IR[2]	0x098	Identity Root, word 2	
IR[3]	0x09C	Identity Root, word 3	
DEVICEADDRTYPE	0x0A0	Device address type	
DEVICEADDR[0]	0x0A4	Device address 0	
DEVICEADDR[1]	0x0A8	Device address 1	
INFO.PART	0x100	Part code	
INFO.VARIANT	0x104	Build code (hardware version and production configuration)	
INFO.PACKAGE	0x108	Package option	
INFO.RAM	0x10C	RAM variant	
INFO.FLASH	0x110	Flash variant	
INFO.UNUSED8[0]	0x114		Reserved
INFO.UNUSED8[1]	0x118		Reserved
INFO.UNUSED8[2]	0x11C		Reserved
PRODTEST[0]	0x350	Production test signature 0	
PRODTEST[1]	0x354	Production test signature 1	
PRODTEST[2]	0x358	Production test signature 2	
TEMP.A0	0x404	Slope definition A0	
TEMP.A1	0x408	Slope definition A1	
TEMP.A2	0x40C	Slope definition A2	
TEMP.A3	0x410	Slope definition A3	
TEMP.A4	0x414	Slope definition A4	
TEMP.A5	0x418	Slope definition A5	
TEMP.B0	0x41C	Y-intercept B0	
TEMP.B1	0x420	Y-intercept B1	
TEMP.B2	0x424	Y-intercept B2	
TEMP.B3	0x428	Y-intercept B3	
TEMP.B4	0x42C	Y-intercept B4	
TEMP.B5	0x430	Y-intercept B5	
TEMP.TO	0x434	Segment end TO	
TEMP.T1	0x438	Segment end T1	
TEMP.T2	0x43C	Segment end T2	
TEMP.T3	0x440	Segment end T3	
TEMP.T4	0x444	Segment end T4	

Table 9: Register overview

4.4.1.1 CODEPAGESIZE

Address offset: 0x010

Code memory page size

Α	R		CODEPAGESIZE									Cod	de r	mer	nor	y pa	ige s	size															_
ID																																	
Res	et Ox	(FFI	FFFFF	1	1	1	1	1	1	1	1	1	1	1	1 :	l 1	. 1	1	1	1	1	1	1	1	1	1	1	1	1 :	1 1	1	1	1
ID				А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α /	Α Α	A	Α	Α	Α	Α	Α	Α	Α.	Δ,	Α.	Α	Α.	A A	Α Α	Α	Α	Α
Bit r	numb	ber		31	. 30	29	28	27	26	25	24	23	22	21 2	20 1	9 1	3 17	16	15	14	13	12	11 1	10	9	8	7	6	5 4	4 3	2	1	0

4.4.1.2 CODESIZE

Address offset: 0x014 Code memory size

^	R CODESIZE		Code memory size in number of pages
ID			
Res	et OxFFFFFFF	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID		A A A A A A A	A A A A A A A A A A A A A A A A A A A
Bit r	umber	31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Total code space is: CODEPAGESIZE * CODESIZE

4.4.1.3 DEVICEID[n] (n=0..1)

Address offset: $0x060 + (n \times 0x4)$

Device identifier

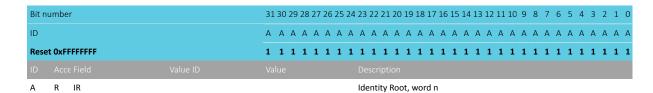
Bit number		31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		A A A A A A A A A A A A A A A A A A A
Reset 0xFFFFFF	ŧ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID Acce Field		Value Description
A R DEVI	CEID	64 bit unique device identifier
		DEVICEIDING contains the least significant hits of the device

DEVICEID[0] contains the least significant bits of the device identifier. DEVICEID[1] contains the most significant bits of the device identifier.

4.4.1.4 ER[n] (n=0..3)

Address offset: $0x080 + (n \times 0x4)$

Encryption root, word n


ID Acce Field			
Reset 0xFFFFFFF	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1
ID	A A A A A A A A		4 A A A
Bit number	31 30 29 28 27 26 25 24 23	3 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3	3 2 1 0

4.4.1.5 IR[n] (n=0..3)

Address offset: $0x090 + (n \times 0x4)$

Identity Root, word n

4.4.1.6 DEVICEADDRTYPE

Address offset: 0x0A0

Device address type

Bit number		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			А
Reset 0xFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID Acce Field			Description
A R DEVICEADDRTYPE			Device address type
	Public	0	Public address
	Random	1	Random address

4.4.1.7 DEVICEADDR[n] (n=0..1)

Address offset: $0x0A4 + (n \times 0x4)$

Device address n

Bit nu	ımbe	r	31	30 2	29	28 2	27 2	26 2	25 2	24 2	3 2	2 2	1 2	0 19	9 18	3 17	' 16	15	14	13	12	11 :	10	9 8	3 7	6	5	4	3	2	1 0
ID			А	Α.	Α	Α	A .	A A	Α,	A	Δ Α	\ <i>A</i>	4 Δ	A	A	Α	Α	Α	Α	Α	Α	Α	Α.	Α Α	A /	A	Α	Α	Α	Α	A A
Reset	t OxF	FFFFFF	1	1	1	1	1	1 :	1	1	1 1	l 1	1 1	. 1	. 1	1	1	1	1	1	1	1	1	1 :	l 1	. 1	1	1	1	1	1 1
ID																															
Α	R	DEVICEADDR								4	8 b	it d	levi	ce a	add	res	S														
											EV	ICE.	ADI	OR[0] c	on	tain	s th	ne I	eas	t się	nif	icar	ıt bi	its (f					
										t	he o	dev	/ice	ado	dres	ss. I	DEV	ICE	AD	DR	[1] (on	tain	s th	ne n	nost	t				
										s	igni	ifica	ant	bits	s of	the	de	vic	e a	ddr	ess.	Or	ly b	its	[15	:0] (of				
										[EV	ICE.	ADI	OR[1] a	ire	use	d.													

4.4.1.8 INFO.PART

Address offset: 0x100

Part code

Bit number	31 30 29 28 2	27 26 25 24 23 22 21	1 20 19 18 17 16 15 14	13 12 11 10 9 8	7 6 5	4 3 2 1 0
ID	AAAA	A A A A A A	. A A A A A A	AAAAAA	. A A A	A
Reset 0x00052820	0 0 0 0	0 0 0 0 0 0 0	0 0 1 0 1 0 0	1 0 1 0 0 0	0 0 1	0 0 0 0
ID Acce Field Valu						
A R PART		Part cod	le			
N52	820 0x52820	nRF5282	20			
N52	833 0x52833	nRF5283	33			
N52	840 0x52840	nRF5284	40			
Uns	pecified 0xFFFFFFF	Unspeci	fied			

4.4.1.9 INFO.VARIANT

Address offset: 0x104

Build code (hardware version and production configuration)

Bit n	umbe	er		31	30 2	9 28	3 27	26	25	24	23	22	21 2	20 19	9 18	17	16	15	14	13 1	2 1	1 10	9	8	7	6	5	4	3 2	2 1	L O
ID				Α	A	А А	A	Α	Α	Α	Α	Α	Α.	А А	A	Α	Α	Α	Α	A A	Δ Α	A	Α	Α	Α	Α	Α	Α	A A	Δ Δ	A A
Rese	et OxF	FFFFFF		1	1	1 1	1	1	1	1	1	1	1	1 1	. 1	1	1	1	1	1 1	1 1	1	1	1	1	1	1	1	1 1	1 1	1
ID																															
Α	R	VARIANT									Bu	ild c	ode	e (ha	ırdv	vare	ve	rsic	n a	ınd p	oro	duct	ion								
											100	nfig	urat	ion)	. Er	coc	led	as i	ASC	II.											
			AAAA	0x4	141	414	1				AΑ	AA																			
			Unspecified	0xF	FFF	FFFF	=				Un	spe	cifie	ed																	

4.4.1.10 INFO.PACKAGE

Address offset: 0x108

Package option

Bit nu	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			A A A A A A A	
Rese	t OxFFFFFFFF		1 1 1 1 1 1 1 1	. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				
Α	R PACKAGE			Package option
		QD	0x2007	QDxx - 40-pin QFN
		Unspecified	0xFFFFFFF	Unspecified

4.4.1.11 INFO.RAM

Address offset: 0x10C

RAM variant

Bit number		31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		A A A A A	A A A A A A A A A A A A A A A A A A A
Reset 0xFFFFFFF		1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID Acce Field			
A R RAM			RAM variant
	K16	0x10	16 kByte RAM
	K32	0x20	32 kByte RAM
	K64	0x40	64 kByte RAM
	K128	0x80	128 kByte RAM
	K256	0x100	256 kByte RAM
	Unspecified	0xFFFFFFF	Unspecified

4.4.1.12 INFO.FLASH

Address offset: 0x110

Flash variant

Bit number	31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID	A A A A A A A	
Reset 0xFFFFFFF	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID Acce Field Value ID		Description
A R FLASH		Flash variant
K128	0x80	128 kByte FLASH
K256	0x100	256 kByte FLASH
K512	0x200	512 kByte FLASH
K1024	0x400	1 MByte FLASH
K2048	0x800	2 MByte FLASH
Unspecified	0xFFFFFFF	Unspecified

4.4.1.13 PRODTEST[n] (n=0..2)

Address offset: $0x350 + (n \times 0x4)$ Production test signature n

Bit n	umber		31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			A A A A A A	A A A A A A A A A A A A A A A A A A A
Rese	t OxFFFFFFF		1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				Description
Α	R PRODTEST			Production test signature n
		Done	0xBB42319F	Production tests done
		NotDone	0xFFFFFFF	Production tests not done

4.4.1.14 TEMP.A0

Address offset: 0x404 Slope definition A0

Bit n	umber	31 30 29 2	28 27 2	6 25 2	24 23	3 22 :	21 20	19 1	18 17	16 1	5 14	13 12	2 11	10	9 8	7	6	5	4 3	2	1 0
ID													Α	Α .	4 Α	Α	Α	A	4 Α	Α	АА
Rese	et OxFFFFFFF	1 1 1	1 1 1	1 1	1 1	. 1	1 1	1	1 1	1 1	۱ 1	1 1	1	1	1 1	1	1	1	1 1	1	1 1
ID																					
Α	R A				Α	(slop	oe de	finiti	on) re	egiste	er.										

4.4.1.15 TEMP.A1

Address offset: 0x408 Slope definition A1


Δ R Δ		A (slope definit	ion) register						
ID Acce Field									
Reset 0xFFFFFFF	1 1 1 1 1 1	1111111	1 1 1 1 1 1	1111	1 1 :	1 1	1 1	1 1	l 1
ID				A A A A	А А А	А А	A A	A A	4 A
Bit number	31 30 29 28 27 26	6 25 24 23 22 21 20 19	18 17 16 15 14 13 1	2 11 10 9	8 7	6 5	4 3	2 1	1 0

4.4.1.16 TEMP.A2

Address offset: 0x40C Slope definition A2

4.4.1.17 TEMP.A3

Address offset: 0x410 Slope definition A3

A R A		A (slope definition) register.	
ID Acce Field			
Reset 0xFFFFFFF	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1
ID		ААААА	A A A A A A
Bit number	31 30 29 28 27 2	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7	6 5 4 3 2 1 0

4.4.1.18 TEMP.A4

Address offset: 0x414 Slope definition A4

A R A	value ID	value	A (slope definition) register.
ID Acce Field			Description
Reset 0xFFFFFFF		1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID			A A A A A A A A A A A A A A A A A A A
Bit number		31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4.4.1.19 TEMP.A5

Address offset: 0x418 Slope definition A5

Bit number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID	A A A A A A A A A A A A A A A A A A A
Reset 0xFFFFFFF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID Acce Field Value ID	Value Description
A R A	A (slope definition) register.

4.4.1.20 TEMP.B0

Address offset: 0x41C

Y-intercept B0

Bit number	31 30 29 28 27 20	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		A A A A A A A A A A A A A A A A A A A
Reset 0xFFFFFFF	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID Acce Field Value ID		
A R B		B (y-intercept)

4.4.1.21 TEMP.B1

Address offset: 0x420

Y-intercept B1

Reset UX																			
D+ 0	FFFFFFF	1 1 1 1	1 1 1	1 1	1 1	1 1	1 1	. 1	1 1	1	1 1	1	1	l 1	1	1	1	1 1	1 1
ID										Α	A A	Α	Α /	4 A	Α	Α	Α /	A А	A A
Bit numb	er	31 30 29 28	27 26 25	24 23	22 21	20 19	18 17	7 16 :	15 14	13	12 11	10	9 8	3 7	6	5	4	3 2	1 0

4.4.1.22 TEMP.B2

Address offset: 0x424

Y-intercept B2

Bit number	31 30 29 28 27 26 25	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3	2 1 0
ID		A A A A A A A A A A	A A A
Reset 0xFFFFFFF	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1
ID Acce Field			
A R B		B (y-intercept)	

4.4.1.23 TEMP.B3

Address offset: 0x428

Y-intercept B3

1111111111
A A A A A A A A A
110 9 8 7 6 5 4 3 2 1
l

4.4.1.24 TEMP.B4

Address offset: 0x42C

Y-intercept B4

ID Acce Field A B B	Value ID	Value	Description B (y-intercept)			
Reset 0xFFFFFFF		1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	11111	1 1 1 1 1	1111
ID				AAAAA	AAAAA	AAAAA
Bit number		31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14	4 13 12 11 10 9	8 7 6 5 4	3 2 1 0

4.4.1.25 TEMP.B5

Address offset: 0x430

Y-intercept B5

Bit number	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		A A A A A A A A A A A A A A A A A A A
Reset 0xFFFFFFF	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID Acce Field		
A R B		B (y-intercept)

4.4.1.26 TEMP.TO

Address offset: 0x434 Segment end TO

Bit number	31 30 29 28 27 26 25	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		A A A A A A A
Reset 0xFFFFFFF	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID Acce Field		Description
A R T		T (segment end) register

4.4.1.27 TEMP.T1

Address offset: 0x438 Segment end T1

Reset 0xFFFFFFFF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1
	1 1 1 1 1
ID A A A	
	AAAAA
Bit number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5	4 3 2 1 0

4.4.1.28 TEMP.T2

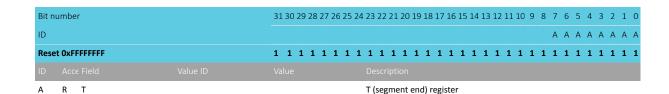
Address offset: 0x43C

Segment end T2

Bit number	31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		A A A A A A A
Reset 0xFFFFFFF	1 1 1 1 1 1 :	. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID Acce Field		
A R T		T (segment end) register

4.4.1.29 TEMP.T3

Address offset: 0x440 Segment end T3



4.4.1.30 TEMP.T4

Address offset: 0x444

Segment end T4

4.5 UICR — User information configuration registers

The user information configuration registers (UICRs) are non-volatile memory (NVM) registers for configuring user-specific settings.

For information on writing UICR registers, see the NVMC — Non-volatile memory controller on page 21 and Memory on page 17 chapters.

4.5.1 Registers

Base address	Peripheral	Instance	Description	Configuration
0x10001000	UICR	UICR	User information configuration	

Table 10: Instances

Register	Offset	Description	
UNUSED0	0x000		Reserved
UNUSED1	0x004		Reserved
UNUSED2	0x008		Reserved
UNUSED3	0x010		Reserved
NRFFW[0]	0x014	Reserved for Nordic firmware design	
NRFFW[1]	0x018	Reserved for Nordic firmware design	
NRFFW[2]	0x01C	Reserved for Nordic firmware design	
NRFFW[3]	0x020	Reserved for Nordic firmware design	
NRFFW[4]	0x024	Reserved for Nordic firmware design	
NRFFW[5]	0x028	Reserved for Nordic firmware design	
NRFFW[6]	0x02C	Reserved for Nordic firmware design	
NRFFW[7]	0x030	Reserved for Nordic firmware design	
NRFFW[8]	0x034	Reserved for Nordic firmware design	
NRFFW[9]	0x038	Reserved for Nordic firmware design	
NRFFW[10]	0x03C	Reserved for Nordic firmware design	
NRFFW[11]	0x040	Reserved for Nordic firmware design	
NRFFW[12]	0x044	Reserved for Nordic firmware design	
NRFHW[0]	0x050	Reserved for Nordic hardware design	

Register	Offset	Description
NRFHW[1]	0x054	Reserved for Nordic hardware design
NRFHW[2]	0x058	Reserved for Nordic hardware design
NRFHW[3]	0x05C	Reserved for Nordic hardware design
NRFHW[4]	0x060	Reserved for Nordic hardware design
NRFHW[5]	0x064	Reserved for Nordic hardware design
NRFHW[6]	0x068	Reserved for Nordic hardware design
NRFHW[7]	0x06C	Reserved for Nordic hardware design
NRFHW[8]	0x070	Reserved for Nordic hardware design
NRFHW[9]	0x074	Reserved for Nordic hardware design
NRFHW[10]	0x078	Reserved for Nordic hardware design
NRFHW[11]	0x07C	Reserved for Nordic hardware design
CUSTOMER[0]	0x080	Reserved for customer
CUSTOMER[1]	0x084	Reserved for customer
CUSTOMER[2]	0x088	Reserved for customer
CUSTOMER[3]	0x08C	Reserved for customer
CUSTOMER[4]	0x090	Reserved for customer
CUSTOMER[5]	0x094	Reserved for customer
CUSTOMER[6]	0x098	Reserved for customer
CUSTOMER[7]	0x09C	Reserved for customer
CUSTOMER[8]	0x0A0	Reserved for customer
CUSTOMER[9]	0x0A4	Reserved for customer
CUSTOMER[10]	0x0A8	Reserved for customer
CUSTOMER[11]	0x0AC	Reserved for customer
CUSTOMER[12]	0x0B0	Reserved for customer
CUSTOMER[13]	0x0B4	Reserved for customer
CUSTOMER[14]	0x0B8	Reserved for customer
CUSTOMER[15]	0x0BC	Reserved for customer
CUSTOMER[16]	0x0C0	Reserved for customer
CUSTOMER[17]	0x0C4	Reserved for customer
CUSTOMER[18]	0x0C8	Reserved for customer
CUSTOMER[19]	0x0CC	Reserved for customer
CUSTOMER[20]	0x0D0	Reserved for customer
CUSTOMER[21]	0x0D4	Reserved for customer
CUSTOMER[22]	0x0D8	Reserved for customer
CUSTOMER[23]	0x0DC	Reserved for customer
CUSTOMER[24]	0x0E0	Reserved for customer
CUSTOMER[25]	0x0E4	Reserved for customer
CUSTOMER[26]	0x0E8	Reserved for customer
CUSTOMER[27]	0x0EC	Reserved for customer
CUSTOMER[28]	0x0F0	Reserved for customer
CUSTOMER[29]	0x0F4	Reserved for customer
CUSTOMER[30]	0x0F8	Reserved for customer
CUSTOMER[31]	0x0FC	Reserved for customer
PSELRESET[0]	0x200	Mapping of the nRESET function (see POWER chapter for details)
PSELRESET[1]	0x204	Mapping of the nRESET function (see POWER chapter for details)
APPROTECT	0x208	Access port protection
DEBUGCTRL	0x210	Processor debug control
REGOUT0	0x304	Output voltage from REG0 regulator stage. The maximum output voltage from this stage is
		given as VDDH - VREGODROP.

Table 11: Register overview

4.5.1.1 NRFFW[n] (n=0..12)

Address offset: $0x014 + (n \times 0x4)$

Reserved for Nordic firmware design

Α	RW NRFFW	Reserved for Nordic firmware design
ID		
Res	et OxFFFFFFF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID		A A A A A A A A A A A A A A A A A A A
Bit r	number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4.5.1.2 NRFHW[n] (n=0..11)

Address offset: $0x050 + (n \times 0x4)$

Reserved for Nordic hardware design

Α	RW NRFHW	Reserved for Nordic hardware design
ID		
Res	et 0xFFFFFFFF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID		A A A A A A A A A A A A A A A A A A A
Bit	number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4.5.1.3 CUSTOMER[n] (n=0..31)

Address offset: $0x080 + (n \times 0x4)$

Reserved for customer

Α	RW CUSTOMER	Reserved for customer
ID		Value Description
Rese	t OxFFFFFFF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID		A A A A A A A A A A A A A A A A A A A
Bit n	umber	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4.5.1.4 PSELRESET[n] (n=0..1)

Address offset: $0x200 + (n \times 0x4)$

Mapping of the nRESET function (see POWER chapter for details)

All PSELRESET registers have to contain the same value for a pin mapping to be valid. If values are not the same, there will be no nRESET function exposed on a GPIO. As a result, the device will always start independently of the levels present on any of the GPIOs.

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	A A A A
Rese	et OxFFFFFFF		1 1 1 1 1 1 1 1	. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				
Α	RW PIN		18	GPIO pin number onto which nRESET is exposed
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect

4.5.1.5 APPROTECT

Address offset: 0x208
Access port protection

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A A A A A A A
Rese	t OxFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				Description
Α	RW PALL			Enable or disable access port protection.
				See Debug on page 42 for more information.
		Disabled	0xFF	Disable
		Enabled	0x00	Enable

4.5.1.6 DEBUGCTRL

Address offset: 0x210
Processor debug control

Bit r	number		31 30 29 28 27 20	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				B
Res	et OxFFFFFFF		1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				
В	RW CPUFPBEN			Configure CPU flash patch and breakpoint (FPB) unit
				behavior
		Enabled	0xFF	Enable CPU FPB unit (default behavior)
		Disabled	0x00	Disable CPU FPB unit. Writes into the FPB registers will be
				ignored.

4.5.1.7 REGOUTO

Address offset: 0x304

Output voltage from REG0 regulator stage. The maximum output voltage from this stage is given as VDDH - VREG0DROP.

Bit number		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			ААА
Reset 0xFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID Acce Field			
A RW VOUT			Output voltage from REG0 regulator stage.
	1V8	0	1.8 V
;	2V1	1	2.1 V
;	2V4	2	2.4 V
	2V7	3	2.7 V
	3V0	4	3.0 V
:	3V3	5	3.3 V
1	DEFAULT	7	Default voltage: 1.8 V

4.6 EasyDMA

EasyDMA is a module implemented by some peripherals to gain direct access to Data RAM.

EasyDMA is an AHB bus master similar to CPU and is connected to the AHB multilayer interconnect for direct access to Data RAM. EasyDMA is not able to access flash.

A peripheral can implement multiple EasyDMA instances to provide dedicated channels. For example, for reading and writing of data between the peripheral and RAM. This concept is illustrated in EasyDMA example on page 39.

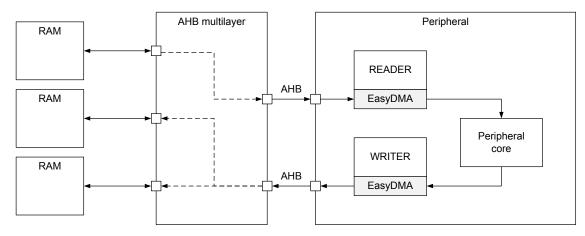


Figure 4: EasyDMA example

An EasyDMA channel is implemented in the following way, but some variations may occur:

```
READERBUFFER_SIZE 5
WRITERBUFFER_SIZE 6

uint8_t readerBuffer[READERBUFFER_SIZE] __at__ 0x20000000;
uint8_t writerBuffer[WRITERBUFFER_SIZE] __at__ 0x200000005;

// Configuring the READER channel
MYPERIPHERAL->READER.MAXCNT = READERBUFFER_SIZE;
MYPERIPHERAL->READER.PTR = &readerBuffer;

// Configure the WRITER channel
MYPERIPHERAL->WRITER.MAXCNT = WRITEERBUFFER_SIZE;
MYPERIPHERAL->WRITER.MAXCNT = &writerBuffer;
```

This example shows a peripheral called MYPERIPHERAL that implements two EasyDMA channels - one for reading called READER, and one for writing called WRITER. When the peripheral is started, it is assumed that the peripheral will perform the following tasks:

- Read 5 bytes from the readerBuffer located in RAM at address 0x20000000
- Process the data
- Write no more than 6 bytes back to the writerBuffer located in RAM at address 0x20000005

The memory layout of these buffers is illustrated in EasyDMA memory layout on page 40.

0x20000000	readerBuffer[0]	readerBuffer[1]	readerBuffer[2]	readerBuffer[3]
0x20000004	readerBuffer[4]	writerBuffer[0]	writerBuffer[1]	writerBuffer[2]
0x20000008	writerBuffer[3]	writerBuffer[4]	writerBuffer[5]	

Figure 5: EasyDMA memory layout

The WRITER.MAXCNT register should not be specified larger than the actual size of the buffer (writerBuffer). Otherwise, the channel would overflow the writerBuffer.

Once an EasyDMA transfer is completed, the AMOUNT register can be read by the CPU to see how many bytes were transferred. For example, CPU can read MYPERIPHERAL->WRITER.AMOUNT register to see how many bytes WRITER wrote to RAM.

Note: The PTR register of a READER or WRITER must point to a valid memory region before use. The reset value of a PTR register is not guaranteed to point to valid memory. See Memory on page 17 for more information about the different memory regions and EasyDMA connectivity.

4.6.1 EasyDMA error handling

Some errors may occur during DMA handling.

If READER.PTR or WRITER.PTR is not pointing to a valid memory region, an EasyDMA transfer may result in a HardFault or RAM corruption. See Memory on page 17 for more information about the different memory regions.

If several AHB bus masters try to access the same AHB slave at the same time, AHB bus congestion might occur. An EasyDMA channel is an AHB master. Depending on the peripheral, the peripheral may either stall and wait for access to be granted, or lose data.

4.6.2 EasyDMA array list

EasyDMA is able to operate in Array List mode.

The Array List mode is implemented in channels where the LIST register is available.

The array list does not provide a mechanism to explicitly specify where the next item in the list is located. Instead, it assumes that the list is organized as a linear array where items are located one after the other in RAM.

The EasyDMA Array List can be implemented by using the data structure ArrayList_type as illustrated in the code example below using a READER EasyDMA channel as an example:

```
#define BUFFER_SIZE 4

typedef struct ArrayList
{
   uint8_t buffer[BUFFER_SIZE];
} ArrayList_type;

ArrayList_type ReaderList[3] __at__ 0x20000000;

MYPERIPHERAL->READER.MAXCNT = BUFFER_SIZE;
MYPERIPHERAL->READER.PTR = &ReaderList;
MYPERIPHERAL->READER.LIST = MYPERIPHERAL_READER_LIST_ArrayList;
```

The data structure only includes a buffer with size equal to the size of READER.MAXCNT register. EasyDMA uses the READER.MAXCNT register to determine when the buffer is full.

0x20000000 : ReaderList[0] buffer[0] buffer[1] buffer[2] buffer[3] 0x20000004 : ReaderList[1] buffer[0] buffer[1] buffer[2] buffer[3] 0x20000008 : ReaderList[2] buffer[0] buffer[1] buffer[2] buffer[3]

Figure 6: EasyDMA array list

4.7 AHB multilayer

READER.PTR = &ReaderList

AHB multilayer enables parallel access paths between multiple masters and slaves in a system. Access is resolved using priorities.

Each bus master is connected to all the slave devices using an interconnection matrix. The bus masters are assigned priorities, which are used to resolve access when two (or more) bus masters request access to the same slave device. When that occurs, the following rules apply:

- If two (or more) bus masters request access to the same slave device, the master with the highest priority is granted the access first.
- Bus masters with lower priority are stalled until the higher priority master has completed its transaction.
- If the higher priority master pauses at any point during its transaction, the lower priority master in queue is temporarily granted access to the slave device until the higher priority master resumes its activity.
- Bus masters that have the same priority are mutually exclusive, thus cannot be used concurrently.

Some peripherals, such as RADIO, do not have a safe stalling mechanism (no internal data buffering, or opportunity to pause incoming data). Being a low priority bus master might cause loss of data for such peripherals upon bus contention. To avoid AHB bus contention when using multiple bus masters, follow these guidelines:

- Avoid situations where more than one bus master is accessing the same slave.
- If more than one bus master is accessing the same slave, make sure that the bus bandwidth is not exhausted.

Below is a list of bus masters in the system and their priorities.

Bus master name	Description
СРИ	
CTRL-AP	
USB	
SPIM1/SPIS1/TWIM1/TWIS1	Same priority and mutually exclusive
RADIO	
CCM/ECB/AAR	Same priority and mutually exclusive
UARTEO	
SPIMO/SPISO/TWIMO/TWISO	Same priority and mutually exclusive

Table 12: AHB bus masters (listed from highest to lowest priority)

Defined bus masters are the CPU and peripherals with implemented EasyDMA. The available slaves are RAM AHB slaves. How the bus masters and slaves are connected using the interconnection matrix is illustrated in Memory on page 17.

4.8 Debug

Debug system offers a flexible and powerful mechanism for non-intrusive debugging.

Figure 7: Debug overview

The main features of the debug system are the following:

- Two-pin serial wire debug (SWD) interface
- Flash patch and breakpoint (FPB) unit that supports:
 - Two literal comparators
 - Six instruction comparators

4.8.1 DAP - Debug access port

An external debugger can access the device via the DAP.

The debug access port (DAP) implements a standard ARM[®] CoreSight^{$^{\text{M}}$} serial wire debug port (SW-DP), which implements the serial wire debug protocol (SWD). SWD is a two-pin serial interface, see SWDCLK and SWDIO in Debug overview on page 42.

In addition to the default access port in CPU (AHB-AP), the DAP includes a custom control access port (CTRL-AP). The CTRL-AP is described in more detail in CTRL-AP - Control access port on page 43.

Note:

- The SWDIO line has an internal pull-up resistor.
- The SWDCLK line has an internal pull-down resistor.

4.8.2 CTRL-AP - Control access port

The control access port (CTRL-AP) is a custom access port that enables control of the device when other access ports in the DAP are disabled by the access port protection.

Access port protection blocks the debugger from read and write access to all CPU registers and memory-mapped addresses. See the UICR register APPROTECT on page 38 for more information on enabling access port protection.

Control access port has the following features:

- Soft reset, see Reset on page 60 for more information
- Disabling of access port protection, which is the reason why CTRL-AP allows control of the device even when all other access ports in the DAP are disabled by the access port protection

Access port protection is disabled by issuing an ERASEALL command via CTRL-AP. This command will erase the flash, UICR, and RAM.

4.8.2.1 Registers

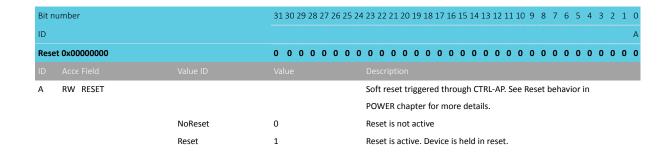
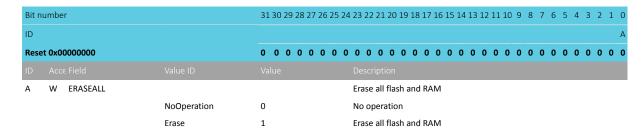

Register	Offset	Description
RESET	0x000	Soft reset triggered through CTRL-AP
ERASEALL	0x004	Erase all
ERASEALLSTATUS	0x008	Status register for the ERASEALL operation
APPROTECTSTATUS	0x00C	Status register for access port protection
IDR	0x0FC	CTRL-AP identification register, IDR

Table 13: Register overview

4.8.2.1.1 RESET

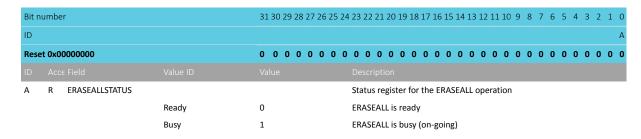
Address offset: 0x000

Soft reset triggered through CTRL-AP



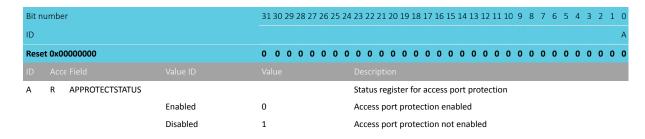
4.8.2.1.2 ERASEALL

Address offset: 0x004


Erase all

4.8.2.1.3 ERASEALLSTATUS

Address offset: 0x008


Status register for the ERASEALL operation

4.8.2.1.4 APPROTECTSTATUS

Address offset: 0x00C

Status register for access port protection

4.8.2.1.5 IDR

Address offset: 0x0FC

CTRL-AP identification register, IDR

Bit n	umbe	er		31	. 30 2	9 2	28 2	7 2	6 25	24	23	22	21	20 :	19 1	8 1	7 1	5 15	14	13 :	L2 1:	1 10	9	8	7	6	5	4	3 2	1	0
ID				Ε	E I		E C) [D D	D	С	С	С	С	C (2 (СВ	В	В	В					Α	Α	Α	Α	A A	A	A
Rese	t OxO	2880000		0	0 ()	0 () () 1	0	1	0	0	0	1 () (0	0	0	0	0 0	0	0	0	0	0	0	0	0 (0	0
ID																															
Α	R	APID									ΑP	ide	entif	fica	tion																_
В	R	CLASS									Ac	cess	s pc	rt (AP)	cla	ISS														
			NotDefined	0x	:0						No	de	fine	d c	lass																
			MEMAP	0x	:8						Me	emo	ory	acc	ess	por	t														
С	R	JEP106ID									JEI	DEC	JEF	10	6 id	ent	ity (ode	9												
D	R	JEP106CONT									JEI	DEC	JEF	10	6 cc	nti	nua	tion	CO	de											
E	R	REVISION									Re	visi	on																		

4.8.2.2 Electrical specification

4.8.2.2.1 Control access port

Symbol	Description	Min.	Тур.	Max.	Units
R _{pull}	Internal SWDIO and SWDCLK pull up/down resistance		13		kΩ
f _{SWDCLK}	SWDCLK frequency	0.125		8	MHz

4.8.3 Debug interface mode

Before an external debugger can access either CPU's access port (AHB-AP) or the control access port (CTRL-AP), the debugger must first request the device to power up via CxxxPWRUPREQ in the SWJ-DP.

If the device is in System OFF when power is requested via CxxxPWRUPREQ, the system will wake up and the DIF flag in RESETREAS on page 66 will be set. The device is in the debug interface mode as long as the debugger is requesting power via CxxxPWRUPREQ. Once the debugger stops requesting power via CxxxPWRUPREQ, the device is back in normal mode. Some peripherals behave differently in Debug Interface mode compared to normal mode. These differences are described in more detail in the chapters of the peripherals that are affected.

When a debug session is over, the external debugger must make sure to put the device back into normal mode since the overall power consumption is higher in debug interface mode than in normal mode.

For details on how to use the debug capabilities, read the debug documentation of your IDE.

4.8.4 Real-time debug

The nRF52820 supports real-time debugging.

Real-time debugging allows interrupts to execute to completion in real time when breakpoints are set in thread mode or lower priority interrupts. This enables developers to set breakpoints and single-step through the code without the risk of real-time event-driven threads running at higher priority failing. For example, this enables the device to continue to service the high-priority interrupts of an external controller or sensor without failure or loss of state synchronization while the developer steps through code in a low-priority thread.

5 Power and clock management

5.1 Power management unit (PMU)

Power and clock management in nRF52820 is designed to automatically ensure maximum power efficiency.

The core of the power and clock management system is the power management unit (PMU) illustrated in the following figure.

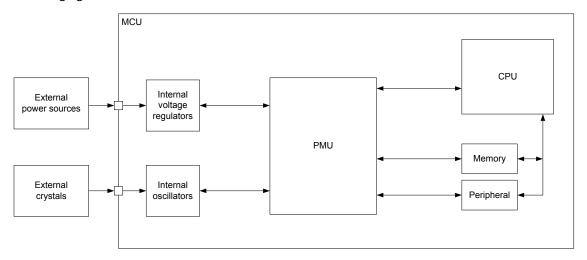


Figure 8: Power management unit

The PMU automatically detects which power and clock resources are required by the different system components at any given time. The PMU will then automatically start/stop and choose operation modes in supply regulators and clock sources, to achieve the lowest power consumption possible.

5.2 Current consumption

Because the system is continually being tuned by the Power management unit (PMU) on page 46, estimating an application's current consumption can be challenging when measurements cannot be directly performed on the hardware. To facilitate the estimation process, a set of current consumption scenarios are provided to show the typical current drawn from the VDD supply.

Each scenario specifies a set of operations and conditions applying to the given scenario. The following table shows a set of common conditions used in all scenarios, unless otherwise stated in the description of a given scenario. All scenarios are listed in Electrical specification on page 47.

Condition	Value
Supply	3 V on VDD/VDDH (Normal voltage mode)
Temperature	25°C
СРИ	WFI (wait for interrupt)/WFE (wait for event) sleep
Peripherals	All idle
Clock	Not running
Regulator	LDO
RAM	In System ON, full 32 kB powered. In System OFF, full 32 kB retention.
Compiler	GCC v7.3.1 20180622 (release) [ARM/embedded-7-branch revision 261907] (GNU Tools for Arm Embedded Processors 7-2018-q3-update). • Compiler flags: -00 -falign-functions=16 -fno-strict-aliasing -mthumb -mcpu=cortex-m4 -mfloat-abi=hard -mfpu=fpv4-sp-d16.
Compiler for CPU Running and Compounded	ARMCC v6.13. Compiler flags: -xc -std=gnu99target=arm-arm-none-eabi -mcpu=cortex-m4 -mfpu=none -mfloat-abi=soft -c -fno-rtti -funsigned-char -gdwarf-3 -fropi -Ofast -ffunction-sections -Omax Linker flags:cpu=Cortex-M4fpu=SoftVFPstrict -Omax
32 MHz crystal ²	SMD 2520, 32 MHz, 10 pF +/- 10 ppm

Table 14: Current consumption scenarios, common conditions

5.2.1 Electrical specification

5.2.1.1 Sleep

Symbol	Description	Min.	Тур.	Max.	Units
I _{ON_RAMOFF_EVENT}	System ON, no RAM retention, wake on any event		1.1		μΑ
I _{ON_RAMON_EVENT}	System ON, full 32 kB RAM retention, wake on any event		1.8		μΑ
I _{ON_RAMON_POF}	System ON, full 32 kB RAM retention, wake on any event,		1.9		μΑ
	power-fail comparator enabled				
I _{ON_RAMON_GPIOTE}	System ON, full 32 kB RAM retention, wake on GPIOTE input		7.4		μΑ
	(event mode)				
I _{ON_RAMON_GPIOTEPO}	RTSystem ON, full 32 kB RAM retention, wake on GPIOTE PORT		1.8		μΑ
	event				
I _{ON_RAMOFF_RTC}	System ON, no RAM retention, wake on RTC (running from		1.5		μΑ
	LFRC clock)				
I _{ON_RAMON_RTC}	System ON, full 32 kB RAM retention, wake on RTC (running		2.6		μΑ
	from LFRC clock)				
I _{OFF_RAMOFF_RESET}	System OFF, no RAM retention, wake on reset		0.6		μΑ
I _{OFF_RAMON_RESET}	System OFF, full 32 kB RAM retention, wake on reset		1.3		μΑ

² Applies only when HFXO is running

Symbol	Description	Min.	Тур.	Max.	Units
I _{ON_RAMOFF_EVENT_5}	System ON, no RAM retention, wake on any event, 5 V		1.3		μΑ
	supply on VDDH, REGO output = 3.3 V				
I _{OFF_RAMOFF_RESET_5}	, System OFF, no RAM retention, wake on reset, 5 V supply on		1.0		μΑ

VDDH, REGO output = 3.3 V

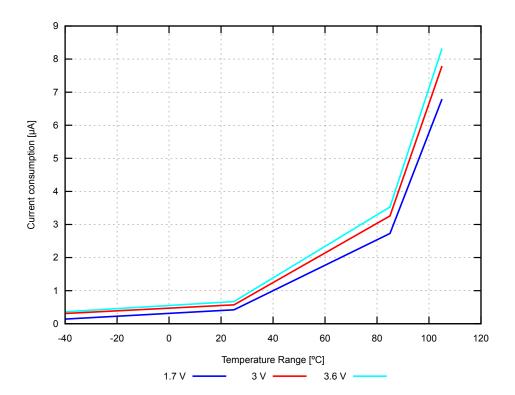


Figure 9: System OFF, no RAM retention, wake on reset (typical values)

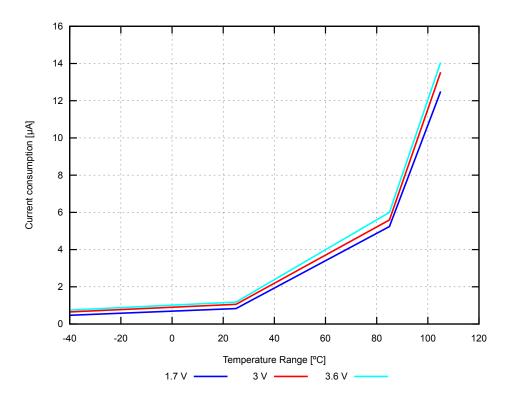


Figure 10: System ON, no RAM retention, wake on any event (typical values)

5.2.1.2 COMP active

Symbol	Description	Min.	Тур.	Max.	Units
I _{COMP,LP}	COMP enabled, low power mode		22.7		μΑ
I _{COMP,NORM}	COMP enabled, normal mode		26.4		μΑ
I _{COMP,HS}	COMP enabled, high-speed mode		33.0		μΑ

5.2.1.3 CPU running

Symbol	Description	Min.	Тур.	Max.	Units
I _{CPU0}	CPU running CoreMark @64 MHz from flash, Clock = HFXO,		3.3		mA
	Regulator = DC/DC				
I _{CPU1}	CPU running CoreMark @64 MHz from flash, Clock = HFXO		5.6		mA
I _{CPU2}	CPU running CoreMark @64 MHz from RAM, Clock = HFXO,		2.4		mA
	Regulator = DC/DC				
I _{CPU3}	CPU running CoreMark @64 MHz from RAM, Clock = HFXO		4.7		mA
I _{CPU4}	CPU running CoreMark @64 MHz from flash, Clock = HFINT,		3.1		mA
	Regulator = DC/DC				

5.2.1.4 Radio transmitting/receiving

Symbol	Description	Min.	Тур.	Max.	Units	
I _{RADIO_TX0}	Radio transmitting @ 8 dBm output power, 1 Mbps		15.5		mA	
	Bluetooth [®] low energy (BLE) mode, Clock = HFXO, Regulator					
	= DC/DC					
I _{RADIO_TX1}	Radio transmitting @ 0 dBm output power, 1 Mbps BLE		6.0		mA	
	mode, Clock = HFXO, Regulator = DC/DC					
I _{RADIO_TX2}	Radio transmitting @ -40 dBm output power, 1 Mbps BLE		3.5		mA	
	mode, Clock = HFXO, Regulator = DC/DC					
I _{RADIO_TX3}	Radio transmitting @ 0 dBm output power, 1 Mbps BLE		11.0		mA	
	mode, Clock = HFXO					
I _{RADIO_TX4}	Radio transmitting @ -40 dBm output power, 1 Mbps BLE		5.4		mA	
	mode, Clock = HFXO					
I _{RADIO_TX5}	Radio transmitting @ 0 dBm output power, 250 kbit/s IEE		6.0		mA	
	802.15.4-2006 mode, Clock = HFXO, Regulator = DC/DC					
I _{RADIO_RX0}	Radio receiving @ 1 Mbps BLE mode, Clock = HFXO,		6.0		mA	
	Regulator = DC/DC					
I _{RADIO_RX1}	Radio receiving @ 1 Mbps BLE mode, Clock = HFXO		10.5		mA	
I _{RADIO_RX2}	Radio receiving @ 250 kbit/s IEE 802.15.4-2006 mode, Clock		6.2		mA	
	= HFXO, Regulator = DC/DC					

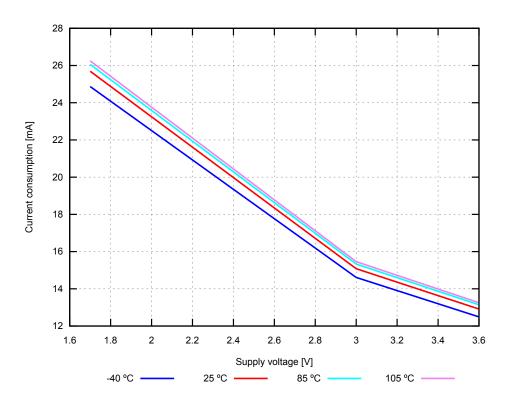


Figure 11: Radio transmitting @ 8 dBm output power, 1 Mbps BLE mode, Clock = HFXO, Regulator = DC/DC (typical values)

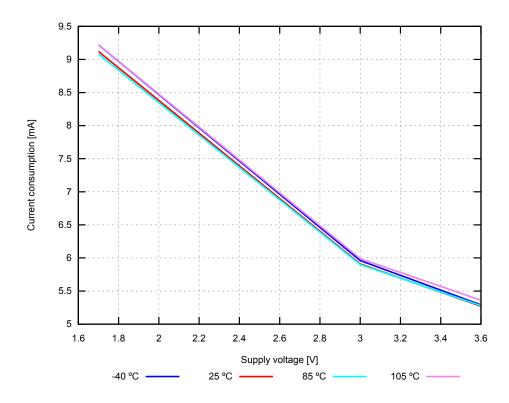


Figure 12: Radio transmitting @ 0 dBm output power, 1 Mbps BLE mode, Clock = HFXO, Regulator = DC/DC (typical values)

5.2.1.5 RNG active

Symbol	Description	Min.	Тур.	Max.	Units
I _{RNG0}	RNG running		539		μΑ

5.2.1.6 TEMP active

Symbol	Description	Min.	Тур.	Max.	Units
I _{TEMPO}	TEMP started		0.92		mA

5.2.1.7 TIMER running

Symbol	Description	Min.	Тур.	Max.	Units
I _{TIMERO}	One TIMER instance running @ 1 MHz, Clock = HFINT		342		μΑ
I _{TIMER1}	Two TIMER instances running @ 1 MHz, Clock = HFINT		341		μΑ
I _{TIMER2}	One TIMER instance running @ 1 MHz, Clock = HFXO		573		μΑ
I _{TIMER3}	One TIMER instance running @ 16 MHz, Clock = HFINT		497		μΑ
I _{TIMER4}	One TIMER instance running @ 16 MHz, Clock = HFXO		729		μΑ

5.2.1.8 USBD running

Symbol	Description	Min.	Тур.	Max.	Units
I _{USB,ACTIVE,VBUS}	Current from VBUS supply, USB active		2.4		mA
I _{USB,SUSPEND,VBUS}	Current from VBUS supply, USB suspended, CPU sleeping		262		μΑ
I _{USB,ACTIVE,VDD}	Current from VDD supply (normal voltage mode), all RAM		7.73		mA
	retained, regulator=LDO, CPU running, USB active				
I _{USB,SUSPEND,VDD}	Current from VDD supply (normal voltage mode), all RAM		173		μΑ
	retained, regulator=LDO, CPU sleeping, USB suspended				
I _{USB,ACTIVE,VDDH}	Current from VDDH supply (high voltage mode), VDD=3		7.46		mA
	V (REG0 output), all RAM retained, regulator=LDO, CPU				
	running, USB active				
I _{USB,SUSPEND,VDDH}	Current from VDDH supply (high voltage mode), VDD=3		178		μΑ
	V (REGO output), all RAM retained, regulator=LDO, CPU				
	sleeping, USB suspended				
I _{USB,DISABLED,VDD}	Current from VDD supply, USB disabled, VBUS supply		7		μΑ
	connected, all RAM retained, regulator=LDO, CPU sleeping				

5.2.1.9 WDT active

Symbol	Description	Min.	Тур.	Max.	Units
I _{WDT,STARTED}	WDT started		2.5		μΑ

5.2.1.10 Compounded

Symbol	Description	Min.	Тур.	Max.	Units
I _{SO}	CPU running CoreMark from flash, Radio transmitting @		8.5		mA
	0 dBm output power, 1 Mbps $ extit{Bluetooth}^{ extit{@}}$ low energy (BLE)				
	mode, Clock = HFXO, Regulator = DC/DC				
I _{S1}	CPU running CoreMark from flash, Radio receiving @ 1		8.3		mA
	Mbps BLE mode, Clock = HFXO, Regulator = DC/DC				
I _{S2}	CPU running CoreMark from flash, Radio transmitting @ 0		16.7		mA
	dBm output power, 1 Mbps BLE mode, Clock = HFXO				
I _{S3}	CPU running CoreMark from flash, Radio receiving @ 1		16.2		mA
	Mbps BLE mode, Clock = HFXO				

5.3 POWER — Power supply

The power supply consists of a number of LDO and DC/DC regulators that are utilized to maximize the system's power efficiency.

This device has the following power supply features:

- On-chip LDO and DC/DC regulators
- Global System ON/OFF modes
- Individual RAM section power control for all system modes
- Analog or digital pin wakeup from System OFF
- Supervisor hardware to manage power-on reset, brownout, and power failure
- Auto-controlled refresh modes for LDO and DC/DC regulators to maximize efficiency
- Separate USB supply

5.3.1 Main supply

The main supply voltage is connected to the VDD/VDDH pins. The system will enter one of two supply voltage modes, Normal or High Voltage mode, depending on how the supply voltage is connected to these pins.

The system enters Normal Voltage mode when the supply voltage is connected to both the VDD and VDDH pins (pin VDD shorted to pin VDDH). For the supply voltage range to connect to both VDD and VDDH pins, see parameter VDD.

The system enters High Voltage mode when the supply voltage is only connected to the VDDH pin and the VDD pin is not connected to any voltage supply. For the supply voltage range to connect to the VDDH pin, see parameter V_{DDH} .

The register MAINREGSTATUS on page 69 can be used to read the current supply voltage mode.

5.3.1.1 Main voltage regulators

The system contains two main supply regulator stages, REGO and REG1.

REG1 regulator stage has the regulator type options of Low-droput regulator (LDO) and Buck regulator (DC/DC). REG0 regulator stage has only the option of Low-dropout regulator (LDO).

In Normal Voltage mode, only the REG1 regulator stage is used, and the REG0 stage is automatically disabled. In High Voltage mode, both regulator stages (REG0 and REG1) are used. The output voltage of REG0 can be configured in register REGOUT0 on page 38. This output voltage is connected to VDD and is the input voltage to REG1.

Note: In High Voltage mode, the configured output voltage for REG0 (REGOUT0 on page 38) must not be greater than REG0 input voltage minus the voltage drop in REG0 (VDDH - $V_{REG0,DROP}$).

By default, the LDO regulators are enabled and the DC/DC regulator of REG1 stage is disabled. Register DCDCEN on page 69 is used to enable the DC/DC regulator for REG1 stage.

When the REG1 DC/DC converter is enabled, the LDO for the REG1 stage will be disabled. External LC filters must be connected for the DC/DC regulator if it is being used. The advantage of using the DC/DC regulator is that the overall power consumption is normally reduced as the efficiency of such a regulator is higher than that of a LDO. The efficiency gained by using the DC/DC regulator is best seen when the regulator voltage drop (difference between input and output voltage) is high. The efficiency of internal regulators vary with the supply voltage and the current drawn from the regulators.

Note: Do not enable the DC/DC regulator without an external LC filter being connected as this will inhibit device operation, including debug access, until an LC filter is connected.

5.3.1.2 GPIO levels

The GPIO high reference voltage is equal to the level on the VDD pin.

In Normal Voltage mode, the GPIO high level equals the voltage supplied to the VDD pin. In High Voltage mode, it equals the level specified in register REGOUTO on page 38.

5.3.1.3 Regulator configuration examples

The voltage regulators can be configured in several ways, depending on the selected supply voltage mode (Normal/High) and the regulator type option for REG1 (LDO or DC/DC).

Four configuration examples are illustrated in the following figures.

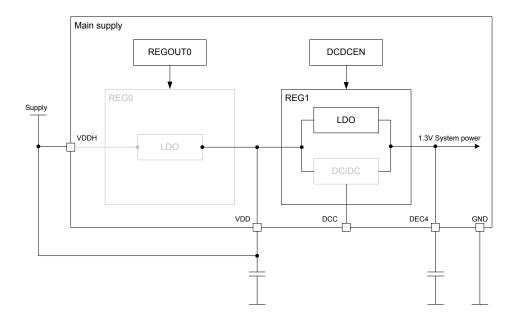


Figure 13: Normal Voltage mode, REG1 LDO

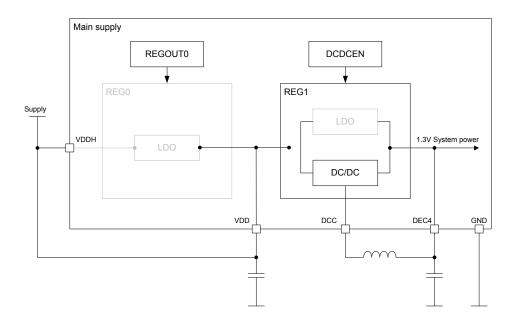


Figure 14: Normal Voltage mode, REG1 DC/DC

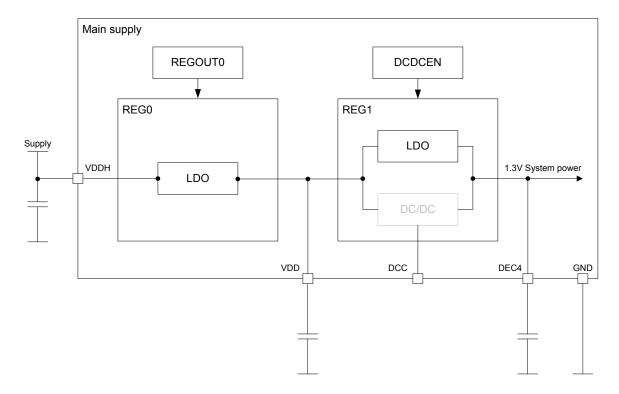


Figure 15: High Voltage mode, REG1 LDO

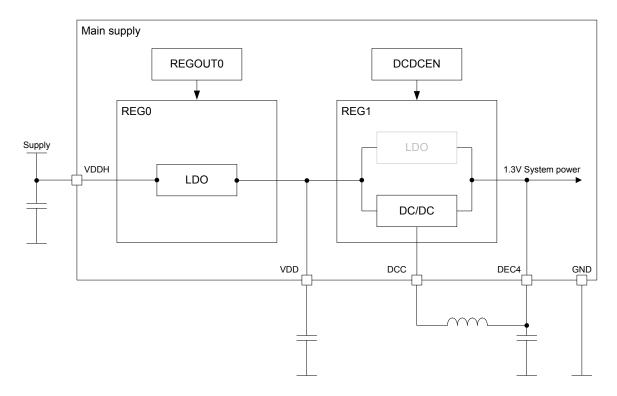
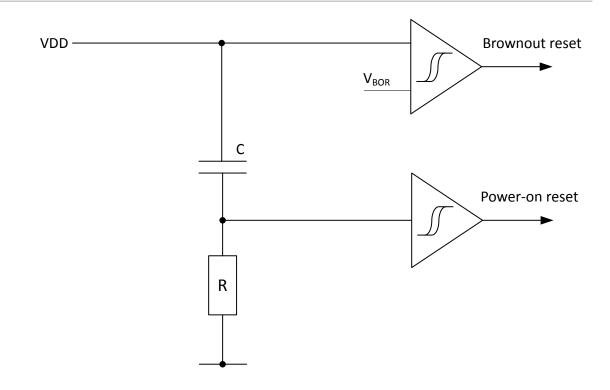


Figure 16: High Voltage mode, REG1 DC/DC

5.3.1.4 Power supply supervisor


The power supply supervisor enables monitoring of the connected power supply.

The power supply supervisor provides the following functionality:

- Power-on reset signals the circuit when a supply is connected
- An optional power-fail comparator (POF) signals the application when the supply voltages drop below a configured threshold
- A fixed brownout reset detector holds the system in reset when the voltage is too low for safe operation

The power supply supervisor is illustrated in the following figure.



Figure 17: Power supply supervisor

5.3.1.5 Power-fail comparator

Using the power-fail comparator (POF) is optional. When enabled, it can provide an early warning to the CPU of an impending power supply failure.

To enable and configure the power-fail comparator, see the register POFCON on page 67.

When the supply voltage falls below the defined threshold, the power-fail comparator generates an event (POFWARN) that can be used by an application to prepare for power failure. This event is also generated when the supply voltage is already below the threshold at the time the power-fail comparator is enabled, or if the threshold is re-configured to a level above the supply voltage.

If the power failure warning is enabled, and the supply voltage is below the threshold, the power-fail comparator will prevent the NVMC from performing write operations to the flash.

The comparator features a hysteresis of V_{HYST}, as illustrated in the following figure.

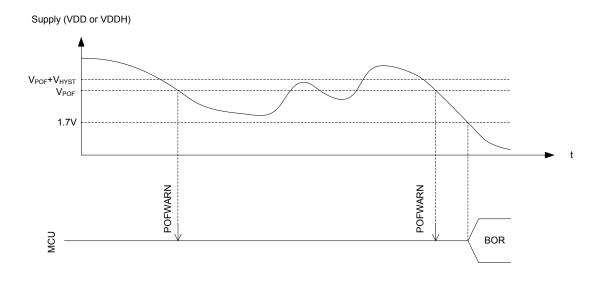


Figure 18: Power-fail comparator (BOR = brownout reset)

To save power, the power-fail comparator is not active in System OFF or System ON when HFCLK is not running.

5.3.2 USB supply

When using the USB peripheral, a 5 V USB supply needs to be provided to the VBUS pin.

The USB peripheral has a dedicated internal voltage regulator for converting the VBUS supply to 3.3 V used by the USB signalling interface (D+ and D- lines, and pull-up on D+). The remainder of the USB peripheral (USBD) is supplied through the main supply like other on-chip features. As a consequence, VBUS and either VDDH or VDD supplies are required for USB peripheral operation.

When VBUS rises into its valid range, the software is notified through a USBDETECTED event. A USBREMOVED event is sent when VBUS goes below its valid range. Use these events to implement the USBD start-up sequence described in the USBD chapter.

When VBUS rises into its valid range while the device is in System OFF, the device resets and transitions to System ON mode. The RESETREAS register will have the VBUS bit set to indicate the source of the wake-up.

See VBUS detection specifications on page 72 for the levels at which the events are sent ($V_{BUS,DETECT}$ and $V_{BUS,REMOVE}$) or at which the system is woken up from System OFF ($V_{BUS,DETECT}$).

When the USBD peripheral is enabled through the ENABLE register, and VBUS is detected, the regulator is turned on. A USBPWRRDY event is sent when the regulator's worst case settling time has elapsed, indicating to the software that it can enable the USB pull-up to signal a USB connection to the host.

The software can read the state of the VBUS detection and regulator output readiness at any time through the USBREGSTATUS register.

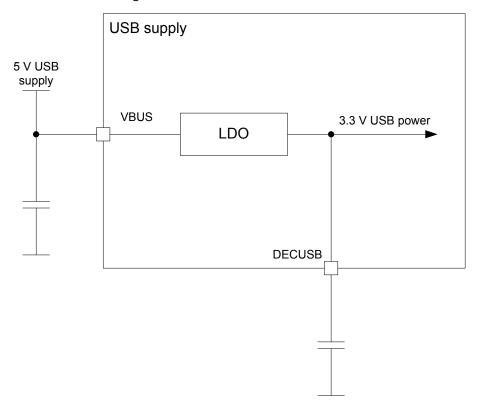


Figure 19: USB voltage regulator

To ensure stability, the input and output of the USB regulator need to be decoupled with a suitable decoupling capacitor. See Reference circuitry on page 421 for the recommended values.

5.3.3 System OFF mode

System OFF is the deepest power saving mode the system can enter. In this mode, the system's core functionality is powered down and all ongoing tasks are terminated.

The device can be put into System OFF mode using the register SYSTEMOFF on page 67. When in System OFF mode, the device can be woken up through one of the following signals:

- The DETECT signal, optionally generated by the GPIO peripheral.
- The ANADETECT signal, optionally generated by the LPCOMP module.
- Detecting a valid USB voltage on the VBUS pin (V_{BUS,DETECT}).
- A reset.

The system is reset when it wakes up from System OFF mode.

One or more RAM sections can be retained in System OFF mode, depending on the settings in the RAM[n].POWER registers. RAM[n].POWER are retained registers. These registers are usually overwritten by the start-up code provided with the nRF application examples.

Before entering System OFF mode, all on-going EasyDMA transactions need to have completed. See peripheral specific chapters for more information about how to acquire the status of EasyDMA transactions.

5.3.3.1 Emulated System OFF mode

If the device is in Debug Interface mode, System OFF will be emulated to secure that all required resources needed for debugging are available during System OFF.

Required resources needed for debugging include the following key components:

- Debug on page 42
- CLOCK Clock control on page 72
- POWER Power supply on page 52
- NVMC Non-volatile memory controller on page 21
- CPU on page 16
- · Flash memory
- RAM

See Debug on page 42 for more information.

Because the CPU is kept on in an emulated System OFF mode, it is recommended to add an infinite loop directly after entering System OFF, to prevent the CPU from executing code that normally should not be executed.

5.3.4 System ON mode

System ON is the default state after power-on reset. In System ON mode, all functional blocks such as the CPU or peripherals can be in IDLE or RUN mode, depending on the configuration set by the software and the state of the application executing.

Register RESETREAS on page 66 provides information about the source causing the wakeup or reset.

The system can switch the appropriate internal power sources on and off, depending on the amount of power needed at any given time. The power requirement of a peripheral is directly related to its activity level, and the activity level of a peripheral fluctuates when specific tasks are triggered or events are generated.

5.3.4.1 Sub-power modes

In System ON mode, when the CPU and all peripherals are in IDLE mode, the system can reside in one of the two sub-power modes.

The sub-power modes are:

- Constant Latency
- Low-power

In Constant Latency mode, the CPU wakeup latency and the PPI task response are constant and kept at a minimum. This is secured by forcing a set of basic resources to be turned on while in sleep. The cost of constant and predictable latency is increased power consumption. Constant Latency mode is selected by triggering the CONSTLAT task.

In Low-power mode, the automatic power management system described in System ON mode on page 59 ensures that the most efficient supply option is chosen to save power. The cost of having the lowest possible power consumption is a varying CPU wakeup latency and PPI task response. Low-power mode is selected by triggering the LOWPWR task.

When the system enters System ON mode, it is by default in the sub-power mode Low-power.

5.3.5 RAM power control

The RAM power control registers are used for configuring the following:

- The RAM sections to be retained during System OFF
- The RAM sections to be retained and accessible during System ON

NORDIC*

In System OFF, retention of a RAM section is configured in the RETENTION field of the corresponding register RAM[n].POWER (n=0..3) on page 69.

In System ON, retention and accessibility of a RAM section is configured in the RETENTION and POWER fields of the corresponding register RAM[n].POWER (n=0..3) on page 69.

The following table summarizes the behavior of these registers.

Configuration			RAM section status	
System on/off	RAM[n].POWER.POWER	RAM[n].POWER.RETENTION	Accessible	Retained
Off	х	Off	No	No
Off	Х	On	No	Yes
On	Off	Off	No	No
On	Off ³	On	No	Yes
On	On	Х	Yes	Yes

Table 15: RAM section configuration

The advantage of not retaining RAM contents is that the overall current consumption is reduced.

See Memory on page 17 for more information on RAM sections.

5.3.6 Reset

Several sources may trigger a reset.

After a reset has occurred, register RESETREAS can be read to determine which source triggered the reset.

5.3.6.1 Power-on reset

The power-on reset generator initializes the system at power-on.

The system is held in reset state until the supply has reached the minimum operating voltage and the internal voltage regulators have started.

5.3.6.2 Pin reset

A pin reset is generated when the physical reset pin on the device is asserted.

Pin reset is configured via both registers PSELRESET[n] (n=0..1) on page 37.

5.3.6.3 Wakeup from System OFF mode reset

The device is reset when it wakes up from System OFF mode.

The debug access port (DAP) is not reset following a wake up from System OFF mode if the device is in Debug Interface mode. See chapter Debug on page 42 for more information.

5.3.6.4 Soft reset

A soft reset is generated when the SYSRESETREQ bit of the application interrupt and reset control register (AIRCR) in the ARM[®] core is set.

See ARM documentation for more details.

A soft reset can also be generated via the register RESET on page 43 in the CTRL-AP.

5.3.6.5 Watchdog reset

A Watchdog reset is generated when the watchdog times out.

³ Not useful. RAM section power off gives negligible reduction in current consumption when retention is on.

See chapter WDT — Watchdog timer on page 413 for more information.

5.3.6.6 Brownout reset

The brownout reset generator puts the system in a reset state if VDD drops below the brownout reset (BOR) threshold.

See section Power fail comparator on page 72 for more information.

5.3.6.7 Retained registers

A retained register is one that will retain its value in System OFF mode and through a reset, depending on the reset source. See the individual peripheral chapters for information on which of their registers are retained.

5.3.6.8 Reset behavior

The various reset sources and their targets are summarized in the table below.

Reset source	Reset target								
	СРИ	Peripherals	GPIO	Debug ⁴	SWJ-DP	RAM	WDT	Retained	RESETREAS
								registers	
CPU lockup ⁵	х	x	x						
Soft reset	х	х	х						
Wakeup from System OFF	x	x		x ⁶		x ⁷	x		
mode reset									
Watchdog reset ⁸	x	x	х	x		х	x	x	
Pin reset	x	x	x	x		x	x	x	
Brownout reset	x	x	х	x	x	х	x	x	x
Power-on reset	х	х	х	х	х	х	х	х	х

Note: The RAM is never reset, but depending on a reset source the content of RAM may be corrupted.

5.3.7 Registers

Base address	Peripheral	Instance	Description	Configuration	
0x40000000	POWER	POWER	Power control		

Table 16: Instances

Register	Offset	Description
TASKS_CONSTLAT	0x78	Enable Constant Latency mode
TASKS_LOWPWR	0x7C	Enable Low-power mode (variable latency)

⁴ All debug components excluding SWJ-DP. See Debug on page 42 for more information about the different debug components.

⁵ Reset from CPU lockup is disabled if the device is in Debug Interface mode. CPU lockup is not possible in System OFF.

⁶ The debug components will not be reset if the device is in Debug Interface mode.

RAM is not reset on wakeup from System OFF mode. RAM, or certain parts of RAM, may not be retained after the device has entered System OFF mode, depending on the settings in the RAM registers.

⁸ Watchdog reset is not available in System OFF.

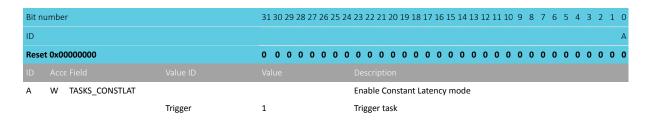

Register	Offset	Description
EVENTS POFWARN	0x108	Power failure warning
EVENTS_SLEEPENTER	0x108	CPU entered WFI/WFE sleep
EVENTS SLEEPEXIT	0x114 0x118	CPU exited WFI/WFE sleep CPU exited WFI/WFE sleep
_		
EVENTS_USBDETECTED	0x11C	Voltage supply detected on VBUS
EVENTS_USBREMOVED	0x120	Voltage supply removed from VBUS
EVENTS_USBPWRRDY	0x124	USB 3.3 V supply ready
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt
RESETREAS	0x400	Reset reason
RAMSTATUS	0x428	RAM status register Deprecated
USBREGSTATUS	0x438	USB supply status
SYSTEMOFF	0x500	System OFF register
POFCON	0x510	Power-fail comparator configuration
GPREGRET	0x51C	General purpose retention register
GPREGRET2	0x520	General purpose retention register
DCDCEN	0x578	Enable DC/DC converter for REG1 stage
MAINREGSTATUS	0x640	Main supply status
RAM[0].POWER	0x900	RAM0 power control register
RAM[0].POWERSET	0x904	RAM0 power control set register
RAM[0].POWERCLR	0x908	RAM0 power control clear register
RAM[1].POWER	0x910	RAM1 power control register
RAM[1].POWERSET	0x914	RAM1 power control set register
RAM[1].POWERCLR	0x918	RAM1 power control clear register
RAM[2].POWER	0x920	RAM2 power control register
RAM[2].POWERSET	0x924	RAM2 power control set register
RAM[2].POWERCLR	0x928	RAM2 power control clear register
RAM[3].POWER	0x930	RAM3 power control register
RAM[3].POWERSET	0x934	RAM3 power control set register
RAM[3].POWERCLR	0x938	RAM3 power control clear register

Table 17: Register overview

5.3.7.1 TASKS_CONSTLAT

Address offset: 0x78

Enable Constant Latency mode

5.3.7.2 TASKS_LOWPWR

Address offset: 0x7C

Enable Low-power mode (variable latency)

Bit n	ur	nbe	er		31	30 2	9 2	28 2	27 2	6 2	25 2	4 2	23 2	2 2	11	20 1	9 :	l8 1	7 1	16 1	5 1	4 1	3 12	2 11	10	9	8	7	6	5	4	3	2 1	. 0
ID																																		Α
Rese	et (0x0	0000000		0	0 () (0	0 ()	0 ()	0 () (0	0	0	0 ()	0 0) (0 0	0	0	0	0	0	0	0	0	0	0	0 0	0
ID																																		
Α		W	TASKS_LOWPWR									E	Enal	ole	Lo	w-p	ov	ver	mo	de	(va	riab	le l	late	ncy)								
				Trigger	1							1	Γrigg	ger	ta	sk																		

5.3.7.3 EVENTS_POFWARN

Address offset: 0x108 Power failure warning

Bit number		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			A
Reset 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A RW EVENTS_POFWARN			Power failure warning
	NotGenerated	0	Event not generated
	Generated	1	Event generated

5.3.7.4 EVENTS_SLEEPENTER

Address offset: 0x114

CPU entered WFI/WFE sleep

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW EVENTS_SLEEPENTER			CPU entered WFI/WFE sleep
		NotGenerated	0	Event not generated
		Generated	1	Event generated

5.3.7.5 EVENTS_SLEEPEXIT

Address offset: 0x118

CPU exited WFI/WFE sleep

Bit n	umber		31	30	29	28 2	27 2	6 25	5 24	4 23	22	2 2 1	20	19 1	18 1	7 1	6 15	5 14	13	12 1	11 1	0 9	8	7	6	5	4	3	2 :	L 0
ID																														Α
Rese	t 0x00000000		0	0	0	0	0 (0 0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0 (0	0	0	0	0	0	0	0 (0
ID																														
Α	RW EVENTS_SLEEPEXIT									CF	PU 6	exite	ed V	VFI/	/WF	E sl	leep)												
		NotGenerated	0							Ev	ent	t no	t ge	ner	ate	d														
		Generated	1							Ev	ent	t gei	nera	atec	ı															

5.3.7.6 EVENTS_USBDETECTED

Address offset: 0x11C

Voltage supply detected on VBUS

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW EVENTS_USBDETECTED			Voltage supply detected on VBUS
		NotGenerated	0	Event not generated
		Generated	1	Event generated

5.3.7.7 EVENTS_USBREMOVED

Address offset: 0x120

Voltage supply removed from VBUS

Bit n	umber		31	30	29 2	28 2	7 26	25	24	23 2	22 2	21 2	20 1	9 18	3 17	16	15	14 :	13 1	.2 1:	l 10	9	8	7 (5 5	4	3	2	1 0
ID																													Α
Rese	t 0x00000000		0	0	0	0 0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0 (0 (0	0	0	0	0 0
ID										Des																			
Α	RW EVENTS_USBREMOVED									Volt	tage	e su	lqqı	y re	mo	/ed	fro	m١	/BU	S									
		NotGenerated	0							Eve	nt r	not	ger	nera	ted														
		Generated	1							Eve	nt g	gen	era	ted															

5.3.7.8 EVENTS_USBPWRRDY

Address offset: 0x124 USB 3.3 V supply ready

Bit n	umber		31 30	29 2	28 2	7 26	25	24	23 2	22 2	21 20) 19	18	17	16 1	L5 1	4 13	12	11 1	.0 9	8	7	6	5	4	3	2 1	0
ID																												Α
Rese	t 0x00000000		0 0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0 (0	0	0 (0	0	0	0	0	0	0	0	0
ID									Des																			
Α	RW EVENTS_USBPWRRDY								USB	3.3	3 V s	upp	ly r	ead	У													
		NotGenerated	0						Eve	nt r	not g	gene	erate	ed														
		Generated	1						Eve	nt g	gene	rate	d															

5.3.7.9 INTENSET

Address offset: 0x304 Enable interrupt

Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				F E D C B A
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW POFWARN			Write '1' to enable interrupt for event POFWARN
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
В	RW SLEEPENTER			Write '1' to enable interrupt for event SLEEPENTER
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
С	RW SLEEPEXIT			Write '1' to enable interrupt for event SLEEPEXIT

Bit r	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				F E D C B A
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
D	RW USBDETECTED			Write '1' to enable interrupt for event USBDETECTED
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Е	RW USBREMOVED			Write '1' to enable interrupt for event USBREMOVED
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
F	RW USBPWRRDY			Write '1' to enable interrupt for event USBPWRRDY
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

5.3.7.10 INTENCLR

Address offset: 0x308 Disable interrupt

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				FEDCB A
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Α	RW POFWARN			Write '1' to disable interrupt for event POFWARN
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
В	RW SLEEPENTER			Write '1' to disable interrupt for event SLEEPENTER
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
С	RW SLEEPEXIT			Write '1' to disable interrupt for event SLEEPEXIT
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
D	RW USBDETECTED			Write '1' to disable interrupt for event USBDETECTED
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
E	RW USBREMOVED			Write '1' to disable interrupt for event USBREMOVED
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
F	RW USBPWRRDY			Write '1' to disable interrupt for event USBPWRRDY
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

5.3.7.11 RESETREAS

Address offset: 0x400

Reset reason

Unless cleared, the RESETREAS register will be cumulative. A field is cleared by writing '1' to it. If none of the reset sources are flagged, this indicates that the chip was reset from the on-chip reset generator, which will indicate a power-on-reset or a brownout reset.

Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				I G E D C B A
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW RESETPIN			Reset from pin-reset detected
		NotDetected	0	Not detected
		Detected	1	Detected
В	RW DOG			Reset from watchdog detected
		NotDetected	0	Not detected
		Detected	1	Detected
С	RW SREQ			Reset from soft reset detected
		NotDetected	0	Not detected
		Detected	1	Detected
D	RW LOCKUP			Reset from CPU lock-up detected
		NotDetected	0	Not detected
		Detected	1	Detected
Е	RW OFF			Reset due to wake up from System OFF mode when wakeup
				is triggered from DETECT signal from GPIO
		NotDetected	0	Not detected
		Detected	1	Detected
G	RW DIF			Reset due to wake up from System OFF mode when wakeup
				is triggered from entering into debug interface mode
		NotDetected	0	Not detected
		Detected	1	Detected
I	RW VBUS			Reset due to wake up from System OFF mode by VBUS rising
				into valid range
		NotDetected	0	Not detected
		Detected	1	Detected

5.3.7.12 RAMSTATUS (Deprecated)

Address offset: 0x428

RAM status register

Since this register is deprecated the following substitutions have been made: RAM block 0 is equivalent to a block comprising RAM0.S0 and RAM1.S0, RAM block 1 is equivalent to a block comprising RAM2.S0 and RAM3.S0. A RAM block field will indicate ON as long as any of the RAM sections associated with a block are on.

Bit number		31 30 29 28 27 26 25 24	23 22 21 20 19 18	17 16 1	15 14 13	12 11 1	0 9	8 7	6	5	4	3 2	1 0
ID													ВА
Reset 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0	0 0 0	0 0 0	0	0 0	0	0	0	0 0	0 0
ID Acce Field													
ID ACCE FIEIG													
A-B R RAMBLOCK[i] (i=01)	Value ID	Value	RAM block i is on	or off/p	owering	up							
	Off	Value 0		or off/p	owering	up							

5.3.7.13 USBREGSTATUS

Address offset: 0x438 USB supply status

Bit number		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			B A
Reset 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A R VBUSDETECT			VBUS input detection status (USBDETECTED and
			USBREMOVED events are derived from this information)
	NoVbus	0	VBUS voltage below valid threshold
	VbusPresent	1	VBUS voltage above valid threshold
B R OUTPUTRDY			USB supply output settling time elapsed
	NotReady	0	USBREG output settling time not elapsed
	Ready	1	USBREG output settling time elapsed (same information as
			USBPWRRDY event)

5.3.7.14 SYSTEMOFF

Address offset: 0x500 System OFF register

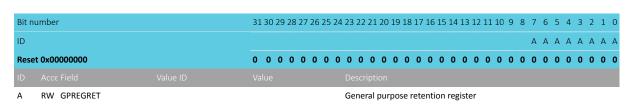
Bit number		31 30 29 28 27 26 25 24	¹ 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			A
Reset 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A W SYSTEMOFF			Enable System OFF mode
	Enter	1	Enable System OFF mode

5.3.7.15 POFCON

Address offset: 0x510

Power-fail comparator configuration

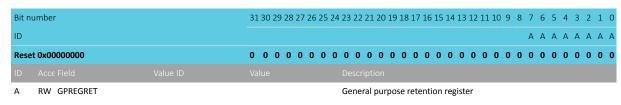
Bit number		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			D D D D B B B B A
Reset 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A RW POF			Enable or disable power failure warning
	Disabled	0	Disable
	Enabled	1	Enable


Bit number		31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
ID			D D D D B B B E
Reset 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B RW THRESHOLD			Power-fail comparator threshold setting. This setting applies
			both for normal voltage mode (supply connected to both
			VDD and VDDH) and high voltage mode (supply connected
			to VDDH only). Values 0-3 set threshold below 1.7 V and
			should not be used as brown out detection will be activated
			before power failure warning on such low voltages.
	V17	4	Set threshold to 1.7 V
	V18	5	Set threshold to 1.8 V
	V19	6	Set threshold to 1.9 V
	V20	7	Set threshold to 2.0 V
	V21	8	Set threshold to 2.1 V
	V22	9	Set threshold to 2.2 V
	V23	10	Set threshold to 2.3 V
	V24	11	Set threshold to 2.4 V
	V25	12	Set threshold to 2.5 V
	V26	13	Set threshold to 2.6 V
	V27	14	Set threshold to 2.7 V
	V28	15	Set threshold to 2.8 V
D RW THRESHOLDVDDH			Power-fail comparator threshold setting for high voltage
			mode (supply connected to VDDH only). This setting does
			not apply for normal voltage mode (supply connected to
			both VDD and VDDH).
	V27	0	Set threshold to 2.7 V
	V28	1	Set threshold to 2.8 V
	V29	2	Set threshold to 2.9 V
	V30	3	Set threshold to 3.0 V
	V31	4	Set threshold to 3.1 V
	V32	5	Set threshold to 3.2 V
	V33	6	Set threshold to 3.3 V
	V34	7	Set threshold to 3.4 V
	V35	8	Set threshold to 3.5 V
	V36	9	Set threshold to 3.6 V
	V37	10	Set threshold to 3.7 V
	V38	11	Set threshold to 3.8 V
	V39	12	Set threshold to 3.9 V
	V40	13	Set threshold to 4.0 V
	V41	14	Set threshold to 4.1 V
	V42	15	Set threshold to 4.2 V

5.3.7.16 GPREGRET

Address offset: 0x51C

General purpose retention register

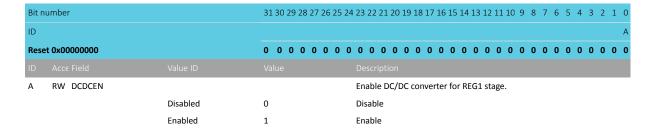


This register is a retained register

5.3.7.17 GPREGRET2

Address offset: 0x520

General purpose retention register



This register is a retained register

5.3.7.18 DCDCEN

Address offset: 0x578

Enable DC/DC converter for REG1 stage

5.3.7.19 MAINREGSTATUS

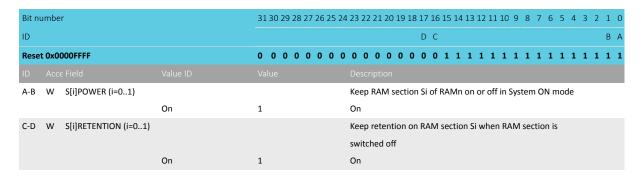
Address offset: 0x640
Main supply status

Bit number		31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			А
Reset 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A R MAINREGSTATUS			Main supply status
	Normal	0	Normal voltage mode. Voltage supplied on VDD.
	High	1	High voltage mode. Voltage supplied on VDDH.

5.3.7.20 RAM[n].POWER (n=0..3)

Address offset: $0x900 + (n \times 0x10)$

RAMn power control register



Bit number	31 30 29 28 27 26 25 24 23							0 19	18	17 :	16 1	5 14	4 13	12 1	11 :	10 9	9 8	3 7	6	5	4	3 2	2 :	1 0
ID										D	С												1	ВА
Reset 0x0000FFFF		0 0 0	0 0	0 0	0	0 0	0 (0	0	0	0 1	1 1	1	1	1	1 :	1 1	. 1	1	1	1	1 :	1 :	1 1
ID Acce Field																								
A-B RW S[i]POWER (i=01)						Keep	RAM	sec	tion	Sic	n o	r of	f in	Syste	em	ON	mo	de.						
						RAM	secti	ons	are	alwa	ays ı	reta	ine	d wh	en	on,	but	ca	า					
						also	be ret	aine	ed w	hen	off	de	oen	ding	on	the	set	ting	gs in	1				
						SiRE	ΓENTΙ	ON.	All	RAIV	1 se	ctio	ns v	vill b	e o	ff ir	Sy	ster	n O	FF				
						mod	e.																	
	Off	0				Off																		
	On	1				On																		
C-D RW S[i]RETENTION (i=01)						Кеер	reter	ntion	n on	RAI	VI se	ectio	on S	i wh	en	RAI	√l se	ecti	on i	s of	f			
	Off	0				Off																		
	On	1				On																		

5.3.7.21 RAM[n].POWERSET (n=0..3)

Address offset: $0x904 + (n \times 0x10)$ RAMn power control set register

When read, this register will return the value of the POWER register.

5.3.7.22 RAM[n].POWERCLR (n=0..3)

Address offset: $0x908 + (n \times 0x10)$ RAMn power control clear register

When read, this register will return the value of the POWER register.

Bit n	umbe	er		313	30 2	29 28	3 27	26	25 2	24 2	23 :	22 :	21 2	0 1	.9 18	3 17	16	15	14	13	12	11 1	0 9	8	7	6	5	4	3 2	2 :	1 0
ID																D	С													ı	3 A
Rese	et 0x0	000FFFF		0	0	0 0	0	0	0	0	0	0	0 (0 (0 0	0	0	1	1	1	1	1 1	. 1	1	1	1	1	1	1 :	1 :	1 1
ID																															
A-B	W	S[i]POWER (i=01)								ŀ	(ee	ep F	RAM	l se	ctio	n Si	of	RAI	Mn	on	or c	off ir	Sys	ten	10 r	N n	ode	9			
			Off	1						(Off																				
C-D	W	S[i]RETENTION (i=01)								ŀ	(ee	ep r	rete	ntic	n o	n R	٩M	sec	tio	n Si	wh	en f	RAM	sec	tio	n is					
										S	wi	itch	ed o	off																	
			Off	1						(Off																				

5.3.8 Electrical specification

5.3.8.1 Regulator operating conditions

Symbol	Description	Min.	Тур.	Max.	Units
$V_{DD,POR}$	VDD supply voltage needed during power-on reset	1.75			V
V_{DD}	Normal voltage mode operating voltage	1.7	3.0	3.6	V
V_{DDH}	High voltage mode operating voltage	2.5	3.7	5.5	V
C _{VDD}	Effective decoupling capacitance on the VDD pin	2.7	4.7	5.5	μF
C _{DEC4}	Effective decoupling capacitance on the DEC4 pin	0.7	1	1.3	μF

5.3.8.2 Regulator specifications, REGO stage

Symbol	Description	Min.	Тур.	Max.	Units
V _{REGOOUT}	REGO output voltage	1.8		3.3	V
V _{REGOOUT,ERR}	REGO output voltage error (deviation from setting in REGOUTO on page 38)	-10		5	%
V _{REGOOUT,ERR,EXT}	REGO output voltage error (deviation from setting in REGOUTO on page 38), extended temperature range	-10		7	%
V _{VDDH-VDD}	Required difference between input voltage (VDDH) and output voltage (VDD, configured in REGOUTO on page 38), VDDH > VDD	0.3			V

5.3.8.3 Device startup times

Symbol	Description	Min.	Тур.	Max.	Units
t _{POR}	Time in power-on reset after supply reaches minimum				
	operating voltage, depending on supply rise time				
$t_{POR,10\mu s}$	VDD rise time 10 μs^9		1	10	ms
t _{POR,10ms}	VDD rise time 10 ms ⁹		9		ms
t _{POR,60ms}	VDD rise time 60 ms ⁹		23	110	ms
t _{RISE,REGOOUT}	REGO output (VDD) rise time after VDDH reaches minimum				
	VDDH supply voltage ⁹				
$t_{\text{RISE},\text{REG0OUT},10\mu\text{s}}$	VDDH rise time 10 μs^9		0.22	1.55	ms
t _{RISE,REGOOUT,10ms}	VDDH rise time 10 ms ⁹		5		ms
t _{RISE,REGOOUT,100ms}	VDDH rise time 100 ms ⁹	30	50	80	ms
t _{PINR}	Reset time when using pin reset, depending on pin				
	capacitance				
t _{PINR,500nF}	500 nF capacitance at reset pin			32.5	ms
FINN, JOOIII				32.3	1113
t _{PINR,10μF}	10 μF capacitance at reset pin			650	ms
t _{PINR,10μF}	10 μF capacitance at reset pin	tPOR			
t _{PINR,10µ} F t _{R2ON}	10 μF capacitance at reset pin Time from power-on reset to System ON	tPOR tPOR +			ms
$t_{\text{PINR},10\mu\text{F}}$ t_{R2ON} $t_{\text{R2ON},\text{NOTCONF}}$	10 μF capacitance at reset pin Time from power-on reset to System ON If reset pin not configured				ms ms
$t_{\text{PINR},10\mu\text{F}}$ t_{R2ON} $t_{\text{R2ON},\text{NOTCONF}}$	10 μF capacitance at reset pin Time from power-on reset to System ON If reset pin not configured	tPOR+	16.5		ms ms
t _{PINR,10μ} F t _{R2ON} t _{R2ON,NOTCONF} t _{R2ON,CONF}	10 μF capacitance at reset pin Time from power-on reset to System ON If reset pin not configured If reset pin configured	tPOR+	16.5 3.0		ms ms
tpinr,10µf tr20n tr20n,notconf tr20n,conf	10 µF capacitance at reset pin Time from power-on reset to System ON If reset pin not configured If reset pin configured Time from OFF to CPU execute	tPOR+			ms ms ms

⁹ See Recommended operating conditions on page 433 for more information.

Symbol	Description	Min.	Тур.	Max.	Units
t _{EVTSET,CLO}	Time from HW event to PPI event in Low Power System ON		0.0625		μs
	mode				

5.3.8.4 Power fail comparator

Symbol	Description	Min.	Тур.	Max.	Units
V _{POF,NV}	Nominal power level warning thresholds (falling supply	1.7		2.8	V
	voltage) in Normal voltage mode (supply on VDD). Levels are				
	configurable between Min. and Max. in 100 mV increments				
V _{POF,HV}	Nominal power level warning thresholds (falling supply	2.7		4.2	V
	voltage) in High voltage mode (supply on VDDH). Levels are				
	configurable in 100 mV increments				
V_{POFTOL}	Threshold voltage tolerance (applies in both Normal voltage	-5		5	%
	mode and High voltage mode)				
V _{POFHYST}	Threshold voltage hysteresis (applies in both Normal voltage	40	50	60	mV
	mode and High voltage mode)				
$V_{BOR,OFF}$	Brownout reset voltage range System OFF mode. Brownout	1.2		1.62	V
	only applies to the voltage on VDD				
$V_{BOR,ON}$	Brownout reset voltage range System ON mode. Brownout	1.57	1.6	1.63	V
	only applies to the voltage on VDD				

5.3.8.5 USB operating conditions

Symbol	Description	Min.	Тур.	Max.	Units
V_{BUS}	Supply voltage on VBUS pin	4.35	5	5.5	V
V_{DPDM}	Voltage on D+ and D- lines	VSS - 0.3		VUSB33	V
				+ 0.3	

5.3.8.6 USB regulator specifications

Symbol	Description	Min.	Тур.	Max.	Units
I _{USB,QUIES}	USB regulator quiescent current drawn from VBUS (USBD		170		μΑ
	enabled)				
t _{USBPWRRDY}	Time from USB enabled to USBPWRRDY event triggered,		1		ms
	V _{BUS} supply provided				
V _{USB33}	On voltage at the USB regulator output (DECUSB pin)	3.0	3.3	3.6	V
R _{SOURCE,VBUS}	Maximum source resistance on VBUS, including cable			2	Ω
C _{DECUSB}	Decoupling capacitor on the DECUSB pin	2.35	4.7	5.5	μF

5.3.8.7 VBUS detection specifications

Symbol	Description	Min.	Тур.	Max.	Units
V _{BUS,DETECT}	Voltage at which rising VBUS gets reported by USBDETECTED	3.4	4.0	4.3	V
V _{BUS,REMOVE}	Voltage at which decreasing VBUS gets reported by	3.0	3.6	3.9	V
	USBREMOVED				

5.4 CLOCK — Clock control

The clock control system can source the system clocks from a range of internal or external high and low frequency oscillators and distribute them to modules based upon a module's individual requirements.

Clock distribution is automated and grouped independently by module to limit current consumption in unused branches of the clock tree.

Listed here are the main features for CLOCK:

- 64 MHz on-chip oscillator
- 64 MHz crystal oscillator, using external 32 MHz crystal
- 32.768 kHz +/-500 ppm RC oscillator
- 32.768 kHz crystal oscillator, using external 32.768 kHz crystal
- 32.768 kHz oscillator synthesized from 64 MHz oscillator
- Firmware (FW) override control of crystal oscillator activity for low latency start up
- Automatic internal oscillator and clock control, and distribution for ultra-low power

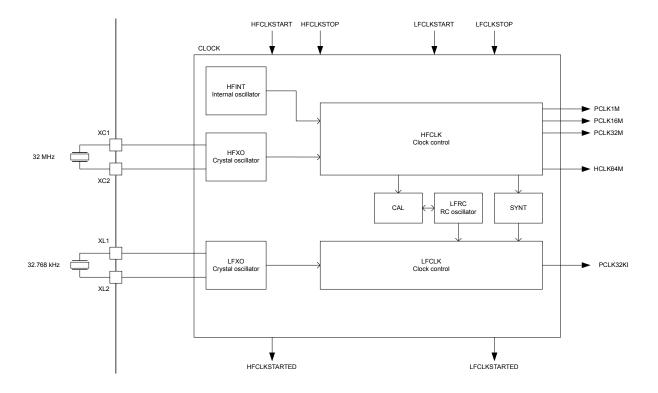


Figure 20: Clock control

5.4.1 HFCLK controller

The HFCLK controller provides several clock signals in the system.

These are as follows:

• HCLK64M: 64 MHz CPU clock

• PCLK1M: 1 MHz peripheral clock

• PCLK16M: 16 MHz peripheral clock

PCLK32M: 32 MHz peripheral clock

The HFCLK controller uses the following high frequency clock (HFCLK) sources:

- 64 MHz internal oscillator (HFINT)
- 64 MHz crystal oscillator (HFXO)

For illustration, see Clock control on page 73.

The HFCLK controller will automatically provide the clock(s) requested by the system. If the system does not request any clocks from the HFCLK controller, the controller will enter a power saving mode.

The HFINT source will be used when HFCLK is requested and HFXO has not been started.

The HFXO is started by triggering the HFCLKSTART task and stopped by triggering the HFCLKSTOP task. When the HFCLKSTART task is triggered, the HFCLKSTARTED event is generated once the HFXO startup time has elapsed. The HFXO startup time is given as the sum of the following:

- HFXO power-up time, as specified in 64 MHz crystal oscillator (HFXO) on page 86.
- HFXO debounce time, as specified in register HFXODEBOUNCE on page 84.

The HFXO must be running to use the RADIO or the calibration mechanism associated with the 32.768 kHz RC oscillator.

5.4.1.1 64 MHz crystal oscillator (HFXO)

The 64 MHz crystal oscillator (HFXO) is controlled by a 32 MHz external crystal.

The crystal oscillator is designed for use with an AT-cut quartz crystal in parallel resonant mode. To achieve correct oscillation frequency, the load capacitance must match the specification in the crystal data sheet.

Circuit diagram of the 64 MHz crystal oscillator on page 74 shows how the 32 MHz crystal is connected to the 64 MHz crystal oscillator.

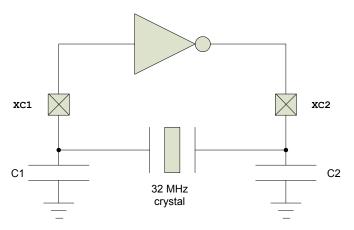


Figure 21: Circuit diagram of the 64 MHz crystal oscillator

The load capacitance (CL) is the total capacitance seen by the crystal across its terminals and is given by:

$$CL = \frac{\left(C1' \cdot C2'\right)}{\left(C1' + C2'\right)}$$

$$C1' = C1 + C_{pcb1} + C_{pin}$$

 $C2' = C2 + C_{pcb2} + C_{pin}$

C1 and C2 are ceramic SMD capacitors connected between each crystal terminal and ground. For more information, see Reference circuitry on page 421. C_{pcb1} and C_{pcb2} are stray capacitances on the PCB. C_{pin} is the pin input capacitance on the XC1 and XC2 pins. See table 64 MHz crystal oscillator (HFXO) on page 86. The load capacitors C1 and C2 should have the same value.

For reliable operation, the crystal load capacitance, shunt capacitance, equivalent series resistance, and drive level must comply with the specifications in table 64 MHz crystal oscillator (HFXO) on page 86. It is recommended to use a crystal with lower than maximum load capacitance and/or shunt capacitance. A low load capacitance will reduce both start up time and current consumption.

5.4.2 LFCLK controller

The system supports several low frequency clock sources.

As illustrated in Clock control on page 73, the system supports the following low frequency clock sources:

- 32.768 kHz RC oscillator (LFRC)
- 32.768 kHz crystal oscillator (LFXO)
- 32.768 kHz synthesized from HFCLK (LFSYNT)

The LFCLK controller and all of the LFCLK clock sources are always switched off when in System OFF mode.

The LFCLK clock is started by first selecting the preferred clock source in register LFCLKSRC on page 84 and then triggering the LFCLKSTART task. If the LFXO is selected as the clock source, the LFCLK will initially start running from the 32.768 kHz LFRC while the LFXO is starting up and automatically switch to using the LFXO once this oscillator is running. The LFCLKSTARTED event will be generated when the LFXO has been started.

The register LFXODEBOUNCE on page 85 is used to configure the LFXO debounce time. The register must be modified if operating in the Extended Operating Conditions temperature range, see Recommended operating conditions on page 433. The LFXO start up time will be increased as a result.

The LFCLK clock is stopped by triggering the LFCLKSTOP task.

Register LFCLKSRC on page 84 controls the clock source, and its allowed swing. The truth table for various situations is as follows:

SRC	EXTERNAL	BYPASS	Comment
0	0	0	Normal operation, LFRC is source
0	0	1	DO NOT USE
0	1	Х	DO NOT USE
1	0	0	Normal XTAL operation
1	1	0	Apply external low swing signal to XL1, ground XL2
1	1	1	Apply external full swing signal to XL1, leave XL2 grounded or unconnected
1	0	1	DO NOT USE
2	0	0	Normal operation, LFSYNT is source
2	0	1	DO NOT USE
2	1	Х	DO NOT USE

Table 18: LFCLKSRC configuration depending on clock source

It is not allowed to write to register LFCLKSRC on page 84 when the LFCLK is running.

A LFCLKSTOP task will stop the LFCLK oscillator. However, the LFCLKSTOP task can only be triggered after the STATE field in register LFCLKSTAT on page 83 indicates LFCLK running state.

The synthesized 32.768 kHz clock depends on the HFCLK to run. If high accuracy is required for the LFCLK running off the synthesized 32.768 kHz clock, the HFCLK must running from the HFXO source.

5.4.2.1 32.768 kHz RC oscillator (LFRC)

The default source of the low frequency clock (LFCLK) is the 32.768 kHz RC oscillator (LFRC).

The LFRC oscillator does not require additional external components.

The LFRC frequency will be affected by variation in temperature. The LFRC oscillator can be calibrated to improve accuracy by using the HFXO as a reference oscillator during calibration.

5.4.2.2 Calibrating the 32.768 kHz RC oscillator

After the LFRC oscillator is started and running, it can be calibrated by triggering the CAL task.

The LFRC oscillator will then temporarily request the HFCLK to be used as a reference for the calibration. A DONE event will be generated when calibration has finished. The HFCLK crystal oscillator has to be started (by triggering the HFCLKSTART task) in order for the calibration mechanism to work.

It is not allowed to stop the LFRC during an ongoing calibration.

5.4.2.3 Calibration timer

The calibration timer can be used to time the calibration interval of the 32.768 kHz RC oscillator.

The calibration timer is started by triggering the CTSTART task and stopped by triggering the CTSTOP task. The calibration timer will always start counting down from the value specified in CTIV (Retained) on page 85 and generate a CTTO event when it reaches 0. The calibration timer will automatically stop when it reaches 0.

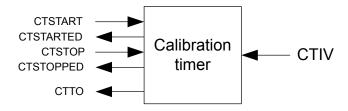


Figure 22: Calibration timer

After a CTSTART task has been triggered, the calibration timer will ignore further tasks until it has returned the CTSTARTED event. Likewise, after a CTSTOP task has been triggered, the calibration timer will ignore further tasks until it has returned a CTSTOPPED event. Triggering CTSTART while the calibration timer is running will immediately return a CTSTARTED event. Triggering CTSTOP when the calibration timer is stopped will immediately return a CTSTOPPED event.

5.4.2.4 32.768 kHz crystal oscillator (LFXO)

For higher LFCLK accuracy (when better than +/- 500 ppm accuracy is required), the low frequency crystal oscillator (LFXO) must be used.

The following external clock sources are supported:

- Low swing clock signal applied to the XL1 pin. The XL2 pin shall then be grounded.
- Rail-to-rail clock signal applied to the XL1 pin. The XL2 pin shall then be grounded or left unconnected.

To achieve correct oscillation frequency, the load capacitance must match the specification in the crystal data sheet. Circuit diagram of the 32.768 kHz crystal oscillator on page 76 shows the LFXO circuitry.

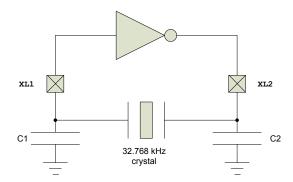


Figure 23: Circuit diagram of the 32.768 kHz crystal oscillator

The load capacitance (CL) is the total capacitance seen by the crystal across its terminals and is given by:

$$CL = \frac{\left(C1' \cdot C2'\right)}{\left(C1' + C2'\right)}$$

$$C1' = C1 + C_{pcb1} + C_{pin}$$

$$C2' = C2 + C_{pcb2} + C_{pin}$$

C1 and C2 are ceramic SMD capacitors connected between each crystal terminal and ground. C_{pcb1} and C_{pcb2} are stray capacitances on the PCB. C_{pin} is the pin input capacitance on the XC1 and XC2 pins (see Low frequency crystal oscillator (LFXO) on page 86). The load capacitors C1 and C2 should have the same value.

For more information, see Reference circuitry on page 421.

5.4.2.5 32.768 kHz synthesized from HFCLK (LFSYNT)

LFCLK can also be synthesized from the HFCLK clock source. The accuracy of LFCLK will then be the accuracy of the HFCLK.

Using the LFSYNT clock avoids the requirement for a 32.768 kHz crystal, but increases average power consumption as the HFCLK will need to be requested in the system.

5.4.3 Registers

Base address	Peripheral	Instance	Description	Configuration
0x40000000	CLOCK	CLOCK	Clock control	

Table 19: Instances

Register	Offset	Description					
TASKS_HFCLKSTART	0x000	Start HFXO crystal oscillator					
TASKS_HFCLKSTOP	0x004	Stop HFXO crystal oscillator					
TASKS_LFCLKSTART	0x008	Start LFCLK					
TASKS_LFCLKSTOP	0x00C	Stop LFCLK					
TASKS_CAL	0x010	Start calibration of LFRC					
TASKS_CTSTART	0x014	Start calibration timer					
TASKS_CTSTOP	0x018	Stop calibration timer					
EVENTS_HFCLKSTARTED	0x100	HFXO crystal oscillator started					
EVENTS_LFCLKSTARTED 0x104		LFCLK started					
EVENTS_DONE 0x10C		Calibration of LFRC completed					
EVENTS_CTTO	0x110	Calibration timer timeout					
EVENTS_CTSTARTED	0x128	Calibration timer has been started and is ready to process new tasks					
EVENTS_CTSTOPPED	0x12C	Calibration timer has been stopped and is ready to process new tasks					
INTENSET	0x304	Enable interrupt					
INTENCLR	0x308	Disable interrupt					
HFCLKRUN	0x408	Status indicating that HFCLKSTART task has been triggered					
HFCLKSTAT	0x40C	HFCLK status					
LFCLKRUN	0x414	Status indicating that LFCLKSTART task has been triggered					
LFCLKSTAT	0x418	LFCLK status					
LFCLKSRCCOPY	0x41C	Copy of LFCLKSRC register, set when LFCLKSTART task was triggered					
LFCLKSRC	0x518	Clock source for the LFCLK					
HFXODEBOUNCE	0x528	HFXO debounce time. The HFXO is started by triggering the TASKS_HFCLKSTART task.					

Register	Offset	Description	
LFXODEBOUNCE	0x52C	${\it LFXO \ debounce \ time.}\ The\ {\it LFXO}\ is\ started\ by\ triggering\ the\ TASKS_LFCLKSTART\ task\ when\ the$	
		LFCLKSRC register is configured for Xtal.	
CTIV	0x538	Calibration timer interval	Retained

Table 20: Register overview

5.4.3.1 TASKS_HFCLKSTART

Address offset: 0x000

Start HFXO crystal oscillator

Bit n	umber		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	W TASKS_HFCLKSTART			Start HFXO crystal oscillator
		Trigger	1	Trigger task

5.4.3.2 TASKS_HFCLKSTOP

Address offset: 0x004

Stop HFXO crystal oscillator

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	W TASKS_HFCLKSTOP			Stop HFXO crystal oscillator
		Trigger	1	Trigger task

5.4.3.3 TASKS_LFCLKSTART

Address offset: 0x008

Start LFCLK

Bit n	number		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	W TASKS_LFCLKSTART			Start LFCLK
		Trigger	1	Trigger task

5.4.3.4 TASKS_LFCLKSTOP

Address offset: 0x00C

Stop LFCLK

Bit n	ıun	nbe	r		31 30	29	28 2	27 2	6 2	5 24	23	22	21	20	19	18 1	.7 1	6 1	5 1	4 13	3 12	2 11	10	9	8	7	6	5	4	3 :	2 1	1 0
ID																																Α
Rese	et C	0x0	0000000		0 0	0	0	0 () (0	0	0	0	0	0	0 (0	0 0) (0	0	0	0	0	0	0	0	0	0	0 (0	0 0
ID																																
Α	١	W	TASKS_LFCLKSTOP								Sto	op l	.FCI	LK																		
				Trigger	1						Tri	gge	r ta	ask																		

5.4.3.5 TASKS_CAL

Address offset: 0x010 Start calibration of LFRC

Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	W TASKS_CAL			Start calibration of LFRC
		Trigger	1	Trigger task

5.4.3.6 TASKS_CTSTART

Address offset: 0x014 Start calibration timer

Bit n	number		31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	et 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	W TASKS_CTSTART			Start calibration timer
		Trigger	1	Trigger task

5.4.3.7 TASKS_CTSTOP

Address offset: 0x018 Stop calibration timer

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
ID				,
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	W TASKS_CTSTOP			Stop calibration timer
		Trigger	1	Trigger task

5.4.3.8 EVENTS_HFCLKSTARTED

Address offset: 0x100

HFXO crystal oscillator started

Bit n	umber		31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	t 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW EVENTS_HFCLKSTARTED			HFXO crystal oscillator started
		NotGenerated	0	Event not generated
		Generated	1	Event generated

5.4.3.9 EVENTS_LFCLKSTARTED

Address offset: 0x104

LFCLK started

Bit n	umber		31	30	29 2	28 2	7 26	25	24 2	23 2	22 2	1 20) 19	18	17 1	6 1	5 14	13	12 1	1 10	9	8	7	6	5	4 3	3 2	2 1	0
ID																													Α
Rese	t 0x00000000		0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0	0 (0	0	0
ID																													
Α	RW EVENTS_LFCLKSTARTED								I	.FCI	LK s	tart	ed																
		NotGenerated	0						E	vei	nt n	ot g	gene	erate	ed														
		Generated	1						E	vei	nt g	ene	rate	ed															

5.4.3.10 EVENTS_DONE

Address offset: 0x10C

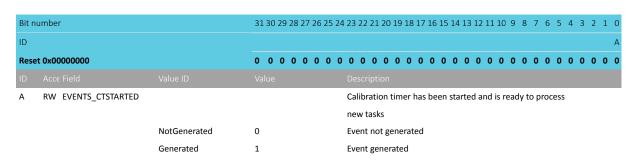
Calibration of LFRC completed

Bit number		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			А
Reset 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A RW EVENTS_DONE			Calibration of LFRC completed
	NotGenerated	0	Event not generated
Generated		1	Event generated

5.4.3.11 EVENTS_CTTO

Address offset: 0x110

Calibration timer timeout


Bit number	31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		А
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		Description
A RW EVENTS_CTTO		Calibration timer timeout
NotGenerated	0	Event not generated
Generated	1	Event generated

5.4.3.12 EVENTS_CTSTARTED

Address offset: 0x128

Calibration timer has been started and is ready to process new tasks

5.4.3.13 EVENTS_CTSTOPPED

Address offset: 0x12C

Calibration timer has been stopped and is ready to process new tasks

Bit number			31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW EVENTS_CTSTOPPED			Calibration timer has been stopped and is ready to process
				new tasks
		NotGenerated	0	Event not generated
		Generated	1	Event generated

5.4.3.14 INTENSET

Address offset: 0x304

Enable interrupt

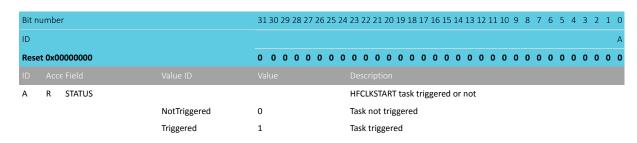
Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				F E D C B A
Rese	Reset 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW HFCLKSTARTED			Write '1' to enable interrupt for event HFCLKSTARTED
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
В	RW LFCLKSTARTED			Write '1' to enable interrupt for event LFCLKSTARTED
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
С	RW DONE			Write '1' to enable interrupt for event DONE
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
D	RW CTTO			Write '1' to enable interrupt for event CTTO
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
E	RW CTSTARTED			Write '1' to enable interrupt for event CTSTARTED
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
F	RW CTSTOPPED			Write '1' to enable interrupt for event CTSTOPPED

Bit number	31 30 29 28 27 26 25 2	14 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		F E D C B A
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		Description
Set	1	Enable
Disabled	0	Read: Disabled
Enabled	1	Read: Enabled

5.4.3.15 INTENCLR

Address offset: 0x308

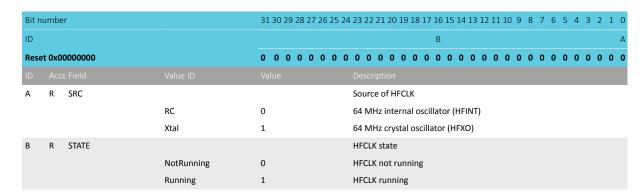
Disable interrupt


Dit -	number		21 20 20 20 27 26 21	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	lumber		31 30 29 28 27 26 25	
ID				F E D C B A
Rese	et 0x00000000		0 0 0 0 0 0	000000000000000000000000000000000000000
ID	Acce Field	Value ID	Value	Description
Α	RW HFCLKSTARTED			Write '1' to disable interrupt for event HFCLKSTARTED
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
В	RW LFCLKSTARTED			Write '1' to disable interrupt for event LFCLKSTARTED
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
С	RW DONE	OONE		Write '1' to disable interrupt for event DONE
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
D	RW CTTO			Write '1' to disable interrupt for event CTTO
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Е	RW CTSTARTED			Write '1' to disable interrupt for event CTSTARTED
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
F	RW CTSTOPPED			Write '1' to disable interrupt for event CTSTOPPED
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

5.4.3.16 HFCLKRUN

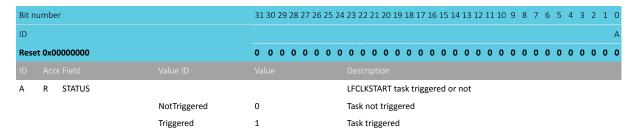
Address offset: 0x408

Status indicating that HFCLKSTART task has been triggered



5.4.3.17 HFCLKSTAT

Address offset: 0x40C


HFCLK status

5.4.3.18 LFCLKRUN

Address offset: 0x414

Status indicating that LFCLKSTART task has been triggered

5.4.3.19 LFCLKSTAT

Address offset: 0x418

LFCLK status

Bit number		31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			B A A
Reset 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A R SRC			Source of LFCLK
	RC	0	32.768 kHz RC oscillator (LFRC)
	Xtal	1	32.768 kHz crystal oscillator (LFXO)
	Synth	2	32.768 kHz synthesized from HFCLK (LFSYNT)
B R STATE			LFCLK state
	NotRunning	0	LFCLK not running
	Running	1	LFCLK running

5.4.3.20 LFCLKSRCCOPY

Address offset: 0x41C

Copy of LFCLKSRC register, set when LFCLKSTART task was triggered

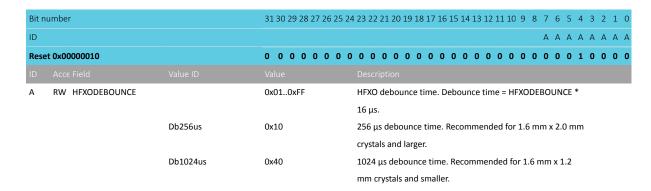
Bit number		31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0							
ID			АА							
Reset 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
ID Acce Field										
A R SRC			Clock source							
	RC		32.768 kHz RC oscillator (LFRC)							
Xtal		1	32.768 kHz crystal oscillator (LFXO)							
Synth		2	32.768 kHz synthesized from HFCLK (LFSYNT)							

5.4.3.21 LFCLKSRC

Address offset: 0x518

Clock source for the LFCLK

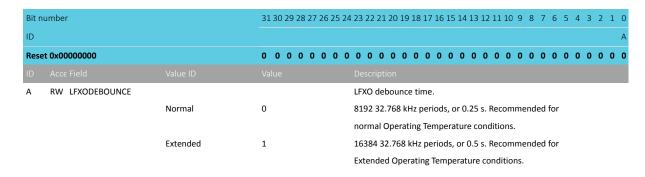
Bit number		31 30 29 28 27 26	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			C B A A
Reset 0x0000000	0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A RW SRC			Clock source
	RC	0	32.768 kHz RC oscillator (LFRC)
	Xtal	1	32.768 kHz crystal oscillator (LFXO)
	Synth	2	32.768 kHz synthesized from HFCLK (LFSYNT)
B RW BYPAS	S		Enable or disable bypass of LFCLK crystal oscillator with
			external clock source
	Disabled	0	Disable (use with Xtal or low-swing external source)
	Enabled	1	Enable (use with rail-to-rail external source)
C RW EXTER	NAL		Enable or disable external source for LFCLK
Disabled Enabled		0	Disable external source (use with Xtal)
		1	Enable use of external source instead of Xtal (SRC needs to
			be set to Xtal)


5.4.3.22 HFXODEBOUNCE

Address offset: 0x528

HFXO debounce time. The HFXO is started by triggering the TASKS_HFCLKSTART task.

The EVENTS_HFCLKSTARTED event is generated after the HFXO power up time + the HFXO debounce time has elapsed. It is not allowed to change the value of this register while the HFXO is starting.

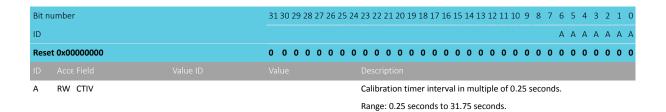


5.4.3.23 LFXODEBOUNCE

Address offset: 0x52C

LFXO debounce time. The LFXO is started by triggering the TASKS_LFCLKSTART task when the LFCLKSRC register is configured for Xtal.

The EVENTS_LFCLKSTARTED event is generated after the LFXO debounce time has elapsed. It is not allowed to change the value of this register while the LFXO is starting.



5.4.3.24 CTIV (Retained)

Address offset: 0x538

This register is a retained register

Calibration timer interval

5.4.4 Electrical specification

5.4.4.1 64 MHz internal oscillator (HFINT)

Symbol	Description	Min.	Тур.	Max.	Units
f _{NOM_HFINT}	Nominal output frequency		64		MHz
f _{TOL_HFINT}	Frequency tolerance		±1.5	±8	%
f _{TOL_HFINT,EXT}	Frequency tolerance, extended temperature range			±9	%

5.4.4.2 64 MHz crystal oscillator (HFXO)

Symbol	Description	Min.	Тур.	Max.	Units
f _{NOM_HFXO}	Nominal output frequency		64		MHz
f _{XTAL_HFXO}	External crystal frequency		32		MHz
f _{TOL_HFXO}	Frequency tolerance requirement for 2.4 GHz proprietary			±60	ppm
	radio applications				
f _{TOL_HFXO_BLE}	Frequency tolerance requirement, Bluetooth low energy			±40	ppm
	applications, packet length ≤ 200 bytes				
$f_{TOL_HFXO_BLE_LP}$	Frequency tolerance requirement, Bluetooth low energy			±30	ppm
	applications, packet length > 200 bytes				
C _{L_HFXO}	Load capacitance			12	pF
C _{0_HFXO}	Shunt capacitance			7	pF
R _{S_HFXO_7PF}	Equivalent series resistance 3 pF < C0 ≤ 7 pF			60	Ω
$R_{S_HFXO_3PF}$	Equivalent series resistance C0 ≤ 3 pF			100	Ω
P _{D_HFXO}	Drive level			100	μW
C _{PIN_HFXO}	Input capacitance XC1 and XC2		3		pF
I _{STBY_X32M}	Core standby current for various crystals				
I _{STBY_X32M_X0}	Typical parameters for a given 2.5mm x 2.0mm crystal:		65		μΑ
	CL_HFXO = 8 pF, CO_HFXO = 1 pF, LM_HFXO = 7 mH,				
	$RS_HFXO = 20 \Omega$				
I _{STBY_X32M_X1}	Typical parameters for a given 1.6mm x 1.2mm crystal:		110		μΑ
	CL_HFXO = 8 pF, C0_HFXO = 0.4 pF, LM_HFXO = 20 mH,				
	RS_HFXO = 40Ω				
I _{START_X32M}	Average startup current for various crystals, first 1 ms				
I _{START_X32M_X0}	Typical parameters for a given 2.5mm x 2.0mm crystal:		360		μΑ
	CL HFXO = 8 pF, CO HFXO = 1 pF, LM HFXO = 7 mH,				
	RS_HFXO = 20Ω				
I _{START_X32M_X1}	Typical parameters for a given 1.6mm x 1.2mm crystal:		785		μА
	CL_HFXO = 8 pF, CO_HFXO = 0.4 pF, LM_HFXO = 20 mH, RS HFXO = 40 Ω				
•	Power-up time for various crystals				
t _{POWERUP_X32M}	Typical parameters for a given 2.5mm x 2.0mm crystal:		60		μs
t _{POWERUP_X32M_X0}			00		μ3
	CL_HFXO = 8 pF, CO_HFXO = 1 pF, LM_HFXO = 7 mH,				
	$RS_HFXO = 20 \Omega$				
t _{POWERUP_X32M_X1}	Typical parameters for a given 1.6mm x 1.2mm crystal:		200		μs
	CL_HFXO = 8 pF, C0_HFXO = 0.4 pF, LM_HFXO = 20 mH,				
	RS_HFXO = 40Ω				

5.4.4.3 Low frequency crystal oscillator (LFXO)

Symbol	Description	Min.	Тур.	Max.	Units
f _{NOM_LFXO}	Crystal frequency		32.768		kHz
$f_{TOL_LFXO_BLE}$	Frequency tolerance requirement for BLE stack			±500	ppm
f _{TOL_LFXO_ANT}	Frequency tolerance requirement for ANT stack			±50	ppm

Symbol	Description	Min.	Тур.	Max.	Units
		141111.	.yp.		
C _{L_LFXO}	Load capacitance			12.5	pF
C _{0_LFXO}	Shunt capacitance			2	pF
R _{S_LFXO}	Equivalent series resistance			100	kΩ
P _{D_LFXO}	Drive level			0.5	μW
C _{pin}	Input capacitance on XL1 and XL2 pads		4		pF
I _{LFXO}	Run current for 32.768 kHz crystal oscillator		0.23		μΑ
t _{START_LFXO}	Startup time for 32.768 kHz crystal oscillator		0.25		S
t _{START_LFXO_EXT}	Startup time for 32.768 kHz crystal oscillator when		0.5		S
	CLOCK.LFXODEBOUNCE configured for Extended debounce				
	time				

5.4.4.4 Low frequency RC oscillator (LFRC)

Symbol	Description	Min.	Тур.	Max.	Units
f_{NOM_LFRC}	Nominal frequency		32.768		kHz
f _{TOL_LFRC}	Frequency tolerance, uncalibrated			±5	%
$f_{TOL_CAL_LFRC}$	Frequency tolerance after calibration ¹⁰			±500	ppm
I _{LFRC}	Run current		0.7		μΑ
t _{START_LFRC}	Startup time		1000		μs

5.4.4.5 Synthesized low frequency clock (LFSYNT)

Symbol	Description	Min.	Тур.	Max.	Units
f _{NOM_LFSYNT}	Nominal frequency		32.768		kHz

Constant temperature within ± 0.5 °C, calibration performed at least every 8 seconds, averaging interval > 7.5 ms, defined as 3 sigma

6 Peripherals

6.1 Peripheral interface

Peripherals are controlled by the CPU by writing to configuration registers and task registers. Peripheral events are indicated to the CPU by event registers and interrupts if they are configured for a given event.

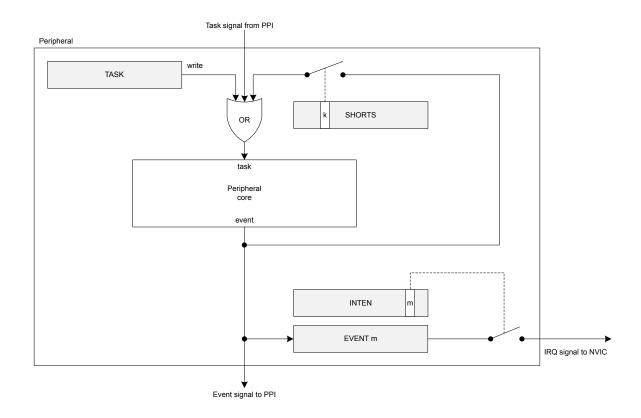


Figure 24: Tasks, events, shortcuts, and interrupts

6.1.1 Peripheral ID

Every peripheral is assigned a fixed block of 0x1000 bytes of address space, which is equal to 1024 x 32 bit registers.

See Instantiation on page 20 for more information about which peripherals are available and where they are located in the address map.

There is a direct relationship between peripheral ID and base address. For example, a peripheral with base address 0x40000000 is assigned ID=0, a peripheral with base address 0x40001000 is assigned ID=1, and a peripheral with base address 0x4001F000 is assigned ID=31.

Peripherals may share the same ID, which may impose one or more of the following limitations:

- Some peripherals share some registers or other common resources.
- Operation is mutually exclusive. Only one of the peripherals can be used at a time.
- Switching from one peripheral to another must follow a specific pattern (disable the first, then enable the second peripheral).

6.1.2 Peripherals with shared ID

In general (with the exception of ID 0), peripherals sharing an ID and base address may not be used simultaneously. The user can only enable one peripheral at the time on this specific ID.

When switching between two peripherals sharing an ID, the user should do the following to prevent unwanted behavior:

- 1. Disable the previously used peripheral.
- 2. Remove any programmable peripheral interconnect (PPI) connections set up for the peripheral that is being disabled.
- 3. Clear all bits in the INTEN register, i.e. INTENCLR = 0xFFFFFFFF.
- **4.** Explicitly configure the peripheral that you are about to enable and do not rely on configuration values that may be inherited from the peripheral that was disabled.
- 5. Enable the now configured peripheral.

See which peripherals are sharing ID in Instantiation on page 20.

6.1.3 Peripheral registers

Most peripherals feature an ENABLE register. Unless otherwise specified in the relevant chapter, the peripheral registers (in particular the PSEL registers) must be configured before enabling the peripheral.

The peripheral must be enabled before tasks and events can be used.

6.1.4 Bit set and clear

Registers with multiple single-bit bit fields may implement the set-and-clear pattern. This pattern enables firmware to set and clear individual bits in a register without having to perform a read-modify-write operation on the main register.

This pattern is implemented using three consecutive addresses in the register map, where the main register is followed by dedicated SET and CLR registers (in that exact order).

The SET register is used to set individual bits in the main register while the CLR register is used to clear individual bits in the main register. Writing $\mathbb 1$ to a bit in SET or CLR register will set or clear the same bit in the main register respectively. Writing $\mathbb 0$ to a bit in SET or CLR register has no effect. Reading the SET or CLR register returns the value of the main register.

Note: The main register may not be visible and hence not directly accessible in all cases.

6.1.5 Tasks

Tasks are used to trigger actions in a peripheral, for example to start a particular behavior. A peripheral can implement multiple tasks with each task having a separate register in that peripheral's task register group.

A task is triggered when firmware writes 1 to the task register, or when the peripheral itself or another peripheral toggles the corresponding task signal. See Tasks, events, shortcuts, and interrupts on page 88.

6.1.6 Events

Events are used to notify peripherals and the CPU about events that have happened, for example a state change in a peripheral. A peripheral may generate multiple events with each event having a separate register in that peripheral's event register group.

An event is generated when the peripheral itself toggles the corresponding event signal, and the event register is updated to reflect that the event has been generated. See Tasks, events, shortcuts, and interrupts on page 88. An event register is only cleared when firmware writes 0 to it.

Events can be generated by the peripheral even when the event register is set to 1.

6.1.7 Shortcuts

A shortcut is a direct connection between an event and a task within the same peripheral. If a shortcut is enabled, the associated task is automatically triggered when its associated event is generated.

Using a shortcut is the equivalent to making the same connection outside the peripheral and through the PPI. However, the propagation delay through the shortcut is usually shorter than the propagation delay through the PPI.

Shortcuts are predefined, which means their connections cannot be configured by firmware. Each shortcut can be individually enabled or disabled through the shortcut register, one bit per shortcut, giving a maximum of 32 shortcuts for each peripheral.

6.1.8 Interrupts

All peripherals support interrupts. Interrupts are generated by events.

A peripheral only occupies one interrupt, and the interrupt number follows the peripheral ID. For example, the peripheral with ID=4 is connected to interrupt number 4 in the nested vectored interrupt controller (NVIC).

Using the INTEN, INTENSET, and INTENCLR registers, every event generated by a peripheral can be configured to generate that peripheral's interrupt. Multiple events can be enabled to generate interrupts simultaneously. To resolve the correct interrupt source, the event registers in the event group of peripheral registers will indicate the source.

Some peripherals implement only INTENSET and INTENCLR registers, and the INTEN register is not available on those peripherals. See the individual peripheral chapters for details. In all cases, reading back the INTENSET or INTENCLR register returns the same information as in INTEN.

Each event implemented in the peripheral is associated with a specific bit position in the INTEN, INTENSET, and INTENCLR registers.

The relationship between tasks, events, shortcuts, and interrupts is shown in Tasks, events, shortcuts, and interrupts on page 88.

Interrupt clearing

Clearing an interrupt by writing 0 to an event register, or disabling an interrupt using the INTENCLR register, can take up to four CPU clock cycles to take effect. This means that an interrupt may reoccur immediately, even if a new event has not come, if the program exits an interrupt handler after the interrupt is cleared or disabled but before four clock cycles have passed.

Note: To avoid an interrupt reoccurring before a new event has come, the program should perform a read from one of the peripheral registers. For example, the event register that has been cleared, or the INTENCLR register that has been used to disable the interrupt. This will cause a one to three-cycle delay and ensure the interrupt is cleared before exiting the interrupt handler.

Care should be taken to ensure the compiler does not remove the read operation as an optimization. If the program can guarantee a four-cycle delay after an event is cleared or an interrupt is disabled, then a read of a register is not required.

6.2 AAR — Accelerated address resolver

Accelerated address resolver is a cryptographic support function for implementing the Resolvable Private Address Resolution Procedure described in the *Bluetooth Core specification* v4.0. Resolvable Private Address generation should be achieved using ECB and is not supported by AAR.

The procedure allows two devices that share a secret key to generate and resolve a hash based on their device address. The AAR block enables real-time address resolution on incoming packets when configured as described in this chapter. This allows real-time packet filtering (whitelisting) using a list of known shared keys (Identity Resolving Keys (IRK) in *Bluetooth*).

6.2.1 EasyDMA

The AAR implements EasyDMA for reading and writing to the RAM. The EasyDMA will have finished accessing the RAM when the END, RESOLVED, and NOTRESOLVED events are generated.

If the IRKPTR on page 96, ADDRPTR on page 96, and the SCRATCHPTR on page 96 is not pointing to the Data RAM region, an EasyDMA transfer may result in a HardFault or RAM corruption. See Memory on page 17 for more information about the different memory regions.

6.2.2 Resolving a resolvable address

As per Bluetooth specification, a private resolvable address is composed of six bytes.

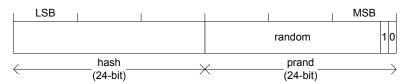


Figure 25: Resolvable address

To resolve an address the register ADDRPTR on page 96 must point to the start of the packet. The resolver is started by triggering the START task. A RESOLVED event is generated when the AAR manages to resolve the address using one of the Identity Resolving Keys (IRK) found in the IRK data structure. The AAR will use the IRK specified in the register IRKO to IRK15 starting from IRKO. The register NIRK on page 95 specifies how many IRKs should be used. The AAR module will generate a NOTRESOLVED event if it is not able to resolve the address using the specified list of IRKs.

The AAR will go through the list of available IRKs in the IRK data structure and for each IRK try to resolve the address according to the Resolvable Private Address Resolution Procedure described in the *Bluetooth Core specification* v4.0 [Vol 3] chapter 10.8.2.3. The time it takes to resolve an address varies due to the location in the list of the resolvable address. The resolution time will also be affected by RAM accesses performed by other peripherals and the CPU. See the Electrical specifications for more information about resolution time.

The AAR only compares the received address to those programmed in the module without checking the address type.

The AAR will stop as soon as it has managed to resolve the address, or after trying to resolve the address using NIRK number of IRKs from the IRK data structure. The AAR will generate an END event after it has stopped.

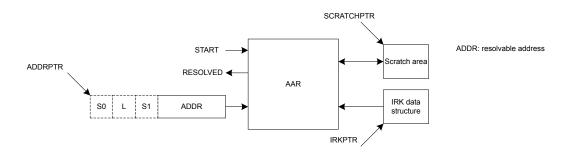


Figure 26: Address resolution with packet preloaded into RAM

6.2.3 Use case example for chaining RADIO packet reception with address resolution using AAR

The AAR may be started as soon as the 6 bytes required by the AAR have been received by the RADIO and stored in RAM. The ADDRPTR pointer must point to the start of packet.

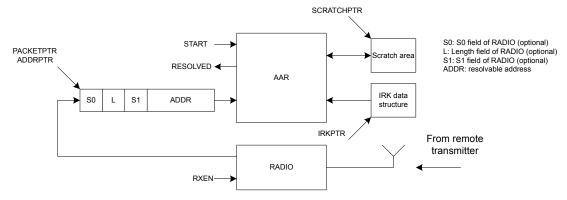


Figure 27: Address resolution with packet loaded into RAM by the RADIO

6.2.4 IRK data structure

The IRK data structure is located in RAM at the memory location specified by the IRKPTR register.

Property	Address offset	Description
IRKO	0	IRK number 0 (16 bytes)
IRK1	16	IRK number 1 (16 bytes)
IRK15	240	IRK number 15 (16 bytes)

Table 21: IRK data structure overview

6.2.5 Registers

Base address	Peripheral	Instance	Description	Configuration
0x4000F000	AAR	AAR	Accelerated address resolver	

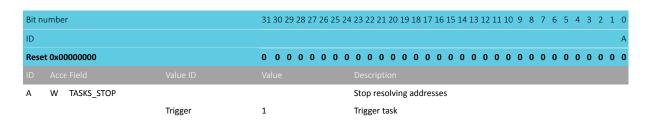
Table 22: Instances

Register	Offset	Description
TASKS_START	0x000	Start resolving addresses based on IRKs specified in the IRK data structure
TASKS_STOP	0x008	Stop resolving addresses
EVENTS END	0×100	Address resolution procedure complete

Register	Offset	Description
EVENTS_RESOLVED	0x104	Address resolved
EVENTS_NOTRESOLVED	0x108	Address not resolved
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt
STATUS	0x400	Resolution status
ENABLE	0x500	Enable AAR
NIRK	0x504	Number of IRKs
IRKPTR	0x508	Pointer to IRK data structure
ADDRPTR	0x510	Pointer to the resolvable address
SCRATCHPTR	0x514	Pointer to data area used for temporary storage

Table 23: Register overview

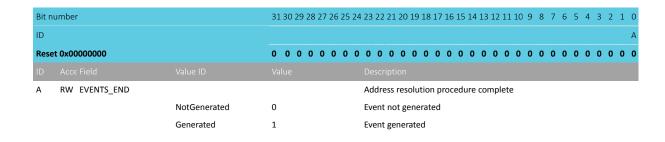
6.2.5.1 TASKS_START


Address offset: 0x000

Start resolving addresses based on IRKs specified in the IRK data structure

Bit number		31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			А
Reset 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A W TASKS_START			Start resolving addresses based on IRKs specified in the IRK
			data structure
	Trigger	1	Trigger task

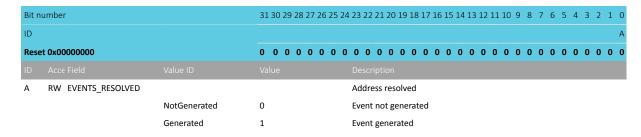
6.2.5.2 TASKS_STOP


Address offset: 0x008 Stop resolving addresses

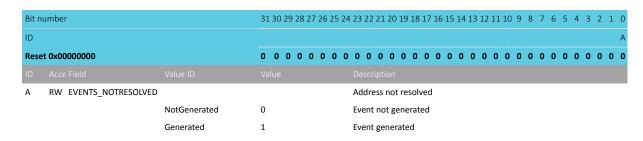
6.2.5.3 EVENTS_END

Address offset: 0x100

Address resolution procedure complete



6.2.5.4 EVENTS_RESOLVED


Address offset: 0x104

Address resolved

6.2.5.5 EVENTS_NOTRESOLVED

Address offset: 0x108
Address not resolved

6.2.5.6 INTENSET

Address offset: 0x304 Enable interrupt

Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				СВА
Rese	t 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW END			Write '1' to enable interrupt for event END
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
В	RW RESOLVED			Write '1' to enable interrupt for event RESOLVED
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
С	RW NOTRESOLVED			Write '1' to enable interrupt for event NOTRESOLVED
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

6.2.5.7 INTENCLR

Address offset: 0x308

Disable interrupt

4463_014 v0.7

94 NORE

Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				СВА
Rese	t 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW END			Write '1' to disable interrupt for event END
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
В	RW RESOLVED			Write '1' to disable interrupt for event RESOLVED
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
С	RW NOTRESOLVED			Write '1' to disable interrupt for event NOTRESOLVED
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

6.2.5.8 STATUS

Address offset: 0x400 Resolution status

A R STATUS	[015] Th	he IRK that was used last time an address was resolved
ID Acce Field		
Reset 0x00000000	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID		АААА
Bit number	31 30 29 28 27 26 25 24 23	3 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.2.5.9 ENABLE

Address offset: 0x500

Enable AAR

Bit number		31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			АА
Reset 0x00000000		0 0 0 0 0	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$
ID Acce Field			
A RW ENABLE			Enable or disable AAR
	Disabled	0	Disable
	Enabled	3	Enable

6.2.5.10 NIRK

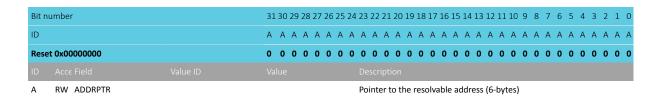
Address offset: 0x504

Number of IRKs

			structure
Α	RW NIRK	[116]	Number of Identity root keys available in the IRK data
ID			
Res	et 0x0000001	0 0 0 0 0 0	$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $
ID			АААА
Bit r	number	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

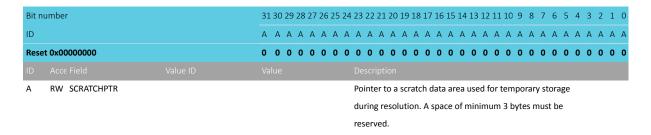
6.2.5.11 IRKPTR

Address offset: 0x508


Pointer to IRK data structure

6.2.5.12 ADDRPTR

Address offset: 0x510


Pointer to the resolvable address

6.2.5.13 SCRATCHPTR

Address offset: 0x514

Pointer to data area used for temporary storage

6.2.6 Electrical specification

6.2.6.1 AAR Electrical Specification

Symbol	Description	Min.	Тур.	Max.	Units
t _{AAR}	Address resolution time per IRK. Total time for several IRKs			6	μs
	is given as (1 μ s + n * t_AAR), where n is the number of IRKs.				
	(Given priority to the actual destination RAM block).				
t _{AAR,8}	Time for address resolution of 8 IRKs. (Given priority to the			49	μs
	actual destination RAM block).				

6.3 ACL — Access control lists

The Access control lists (ACL) peripheral is designed to assign and enforce access permissions to different regions of the on-chip flash memory map.

Flash memory regions can be assigned individual ACL permission schemes. The following registers are involved:

- PERM register, where the permissions are configured.
- ADDR register, where the word-aligned start address for the flash page is defined.
- SIZE register, where the size of the region the permissions are applied to is determined.

Note: The size of the region in bytes is restricted to a multiple of the flash page size, and the maximum region size is limited to half the flash size. See Memory on page 17 for more information.

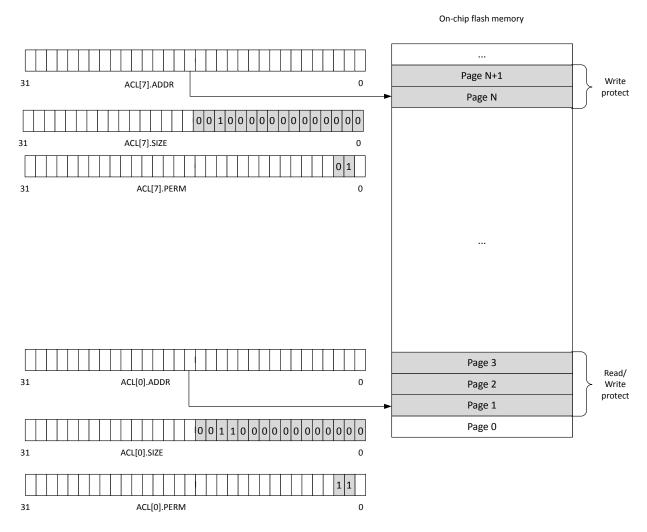


Figure 28: Protected regions of on-chip flash memory

There are four defined ACL permission schemes, with different combinations of read/write permissions:

Read	Write	Protection description
0	0	No protection. Entire region can be executed, read, written or erased.
0	1	Region can be executed and read, but not written or erased.
1	0	Region can be written and erased, but not executed or read.
1	1	Region is locked for all access until next reset.

Table 24: Permission schemes

Note: If a permission violation to a protected region is detected by the ACL peripheral, the request is blocked and a Bus Fault exception is triggered.

Access control to a configured region is enforced by the hardware two CPU clock cycles after the ADDR, SIZE, and PERM registers for an ACL instance have been successfully written. The protection is only enforced if a valid start address of the flash page boundary is written into the ADDR register, and the values of the SIZE and PERM registers are not zero.

The ADDR, SIZE, and PERM registers can only be written once. All ACL configuration registers are cleared on reset (by resetting the device from any reset source), which is also the only way of clearing the configuration registers. To ensure that the desired permission schemes are always enforced by the ACL peripheral, the device boot sequence must perform the necessary configuration.

Debugger read access to a read-protected region will be Read-As-Zero (RAZ), while debugger write access to a write-protected region will be Write-Ignored (WI).

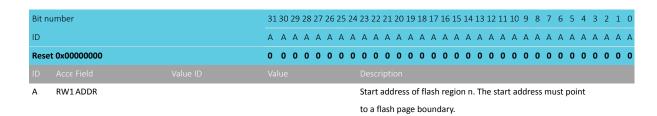
6.3.1 Registers

Base address	Peripheral	Instance	Description	Configuration	
0x4001E000	ACL	ACL	Access control lists		

Table 25: Instances

Register	Offset	Description	
ACL[0].ADDR	0x800	Start address of region to protect. The start address must be word-aligned.	
ACL[0].SIZE	0x804	Size of region to protect counting from address ACL[0].ADDR. Write '0' as no effect.	
ACL[0].PERM	0x808	Access permissions for region 0 as defined by start address ACL[0].ADDR and size ACL[0].SIZE	
ACL[0].UNUSED0	0x80C		Reserved
ACL[1].ADDR	0x810	Start address of region to protect. The start address must be word-aligned.	
ACL[1].SIZE	0x814	Size of region to protect counting from address ACL[1].ADDR. Write '0' as no effect.	
ACL[1].PERM	0x818	Access permissions for region 1 as defined by start address ACL[1].ADDR and size ACL[1].SIZE	
ACL[1].UNUSED0	0x81C		Reserved
ACL[2].ADDR	0x820	Start address of region to protect. The start address must be word-aligned.	
ACL[2].SIZE	0x824	Size of region to protect counting from address ACL[2].ADDR. Write '0' as no effect.	
ACL[2].PERM	0x828	Access permissions for region 2 as defined by start address ACL[2].ADDR and size ACL[2].SIZE	
ACL[2].UNUSED0	0x82C		Reserved
ACL[3].ADDR	0x830	Start address of region to protect. The start address must be word-aligned.	
ACL[3].SIZE	0x834	Size of region to protect counting from address ACL[3].ADDR. Write '0' as no effect.	
ACL[3].PERM	0x838	Access permissions for region 3 as defined by start address ACL[3].ADDR and size ACL[3].SIZE	
ACL[3].UNUSED0	0x83C		Reserved
ACL[4].ADDR	0x840	Start address of region to protect. The start address must be word-aligned.	
ACL[4].SIZE	0x844	Size of region to protect counting from address ACL[4].ADDR. Write '0' as no effect.	
ACL[4].PERM	0x848	Access permissions for region 4 as defined by start address ACL[4].ADDR and size ACL[4].SIZE	
ACL[4].UNUSED0	0x84C		Reserved
ACL[5].ADDR	0x850	Start address of region to protect. The start address must be word-aligned.	
ACL[5].SIZE	0x854	Size of region to protect counting from address ACL[5].ADDR. Write '0' as no effect.	
ACL[5].PERM	0x858	Access permissions for region 5 as defined by start address ACL[5].ADDR and size ACL[5].SIZE	
ACL[5].UNUSED0	0x85C		Reserved
ACL[6].ADDR	0x860	Start address of region to protect. The start address must be word-aligned.	
ACL[6].SIZE	0x864	Size of region to protect counting from address ACL[6].ADDR. Write '0' as no effect.	
ACL[6].PERM	0x868	Access permissions for region 6 as defined by start address ACL[6].ADDR and size ACL[6].SIZE	
ACL[6].UNUSED0	0x86C		Reserved
ACL[7].ADDR	0x870	Start address of region to protect. The start address must be word-aligned.	
ACL[7].SIZE	0x874	Size of region to protect counting from address ACL[7].ADDR. Write '0' as no effect.	
ACL[7].PERM	0x878	Access permissions for region 7 as defined by start address ACL[7].ADDR and size ACL[7].SIZE	

Register	Offset	Description	
ACL[7].UNUSED0	0x87C		Reserved

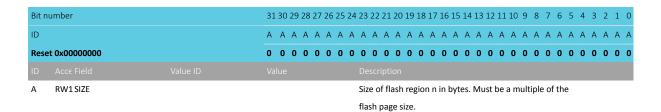

Table 26: Register overview

6.3.1.1 ACL[n].ADDR (n=0..7)

Address offset: $0x800 + (n \times 0x10)$

Start address of region to protect. The start address must be word-aligned.

This register can only be written once.



6.3.1.2 ACL[n].SIZE (n=0..7)

Address offset: $0x804 + (n \times 0x10)$

Size of region to protect counting from address ACL[n].ADDR. Write '0' as no effect.

This register can only be written once.

6.3.1.3 ACL[n].PERM (n=0..7)

Address offset: $0x808 + (n \times 0x10)$

Access permissions for region n as defined by start address ACL[n].ADDR and size ACL[n].SIZE

This register can only be written once.

Bit r	number		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				СВ
Res	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
В	RW1 WRITE			Configure write and erase permissions for region n. Write '0'
				has no effect.
		Enable	0	Allow write and erase instructions to region n
		Disable	1	Block write and erase instructions to region n
С	RW1 READ			Configure read permissions for region n. Write '0' has no
				effect.
		Enable	0	Allow read instructions to region n
		Disable	1	Block read instructions to region n

6.4 CCM — AES CCM mode encryption

Cipher block chaining - message authentication code (CCM) mode is an authenticated encryption algorithm designed to provide both authentication and confidentiality during data transfer. CCM combines counter mode encryption and CBC-MAC authentication. The CCM terminology "Message authentication code (MAC)" is called the "Message integrity check (MIC)" in *Bluetooth* terminology and also in this document.

The CCM block generates an encrypted keystream that is applied to input data using the XOR operation and generates the 4 byte MIC field in one operation. The CCM and radio can be configured to work synchronously. The CCM will encrypt in time for transmission and decrypt after receiving bytes into memory from the radio. All operations can complete within the packet RX or TX time. CCM on this device is implemented according to *Bluetooth* requirements and the algorithm as defined in IETF RFC3610, and depends on the AES-128 block cipher. A description of the CCM algorithm can also be found in NIST Special Publication 800-38C. The *Bluetooth* specification describes the configuration of counter mode blocks and encryption blocks to implement compliant encryption for BLE.

The CCM block uses EasyDMA to load key, counter mode blocks (including the nonce required), and to read/write plain text and cipher text.

The AES CCM supports three operations: key-stream generation, packet encryption, and packet decryption. All these operations are done in compliance with the *Bluetooth* specification. ¹¹

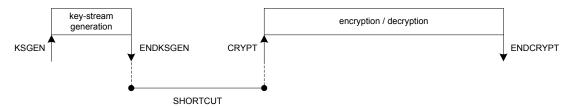


Figure 29: Key-stream generation followed by encryption or decryption. The shortcut is optional.

6.4.1 Key-steam generation

A new key-stream needs to be generated before a new packet encryption or packet decryption operation can be started.

A key-stream is generated by triggering the KSGEN task and an ENDKSGEN event will be generated when the key-stream has been generated.

Key-stream generation, packet encryption, and packet decryption operations utilize the configuration specified in the data structure pointed to by CNFPTR on page 110. It is necessary to configure this pointer and its underlying data structure, and the MODE on page 109 register before the KSGEN task is triggered.

The key-stream will be stored in the AES CCM's temporary memory area, specified by the SCRATCHPTR on page 110, where it will be used in subsequent encryption and decryption operations.

For default length packets (MODE.LENGTH = Default) the size of the generated key-stream is 27 bytes. When using extended length packets (MODE.LENGTH = Extended) the MAXPACKETSIZE on page 111 register specifies the length of the key-stream to be generated. The length of the generated key-stream must be greater or equal to the length of the subsequent packet payload to be encrypted or decrypted. The maximum length of the key-stream in extended mode is 251 bytes, which means that the maximum packet payload size is 251.

NORDIC*

¹¹ Bluetooth AES CCM 128 bit block encryption, see Bluetooth Core specification Version 4.0.

If a shortcut is used between ENDKSGEN event and CRYPT task, the INPTR on page 110 pointer and the OUTPTR on page 110 pointers must also be configured before the KSGEN task is triggered.

6.4.2 Encryption

During packet encryption, the AES CCM will read the unencrypted packet located in RAM at the address specified in the INPTR pointer, encrypt the packet and append a four byte long Message Integrity Check (MIC) field to the packet.

Encryption is started by triggering the CRYPT task with the MODE on page 109 register set to ENCRYPTION. An ENDCRYPT event will be generated when packet encryption is completed

The AES CCM will also modify the length field of the packet to adjust for the appended MIC field, that is, add four bytes to the length, and store the resulting packet back into RAM at the address specified in the OUTPTR on page 110 pointer, see Encryption on page 101.

Empty packets (length field is set to 0) will not be encrypted but instead moved unmodified through the AES CCM.

The CCM supports different widths of the LENGTH field in the data structure for encrypted packets. This is configured in the MODE on page 109 register.

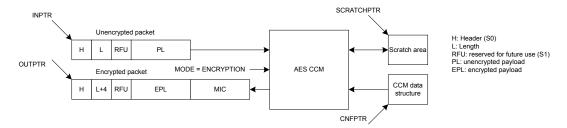


Figure 30: Encryption

6.4.3 Decryption

During packet decryption, the AES CCM will read the encrypted packet located in RAM at the address specified in the INPTR pointer, decrypt the packet, authenticate the packet's MIC field and generate the appropriate MIC status.

Decryption is started by triggering the CRYPT task with the MODE on page 109 register set to DECRYPTION. An ENDCRYPT event will be generated when packet decryption is completed

The AES CCM will also modify the length field of the packet to adjust for the MIC field, that is, subtract four bytes from the length, and then store the decrypted packet into RAM at the address pointed to by the OUTPTR pointer, see Decryption on page 102.

The CCM is only able to decrypt packet payloads that are at least 5 bytes long, that is, 1 byte or more encrypted payload (EPL) and 4 bytes of MIC. The CCM will therefore generate a MIC error for packets where the length field is set to 1, 2, 3 or 4.

Empty packets (length field is set to 0) will not be decrypted but instead moved unmodified through the AES CCM, these packets will always pass the MIC check.

The CCM supports different widths of the LENGTH field in the data structure for decrypted packets. This is configured in the MODE on page 109 register.

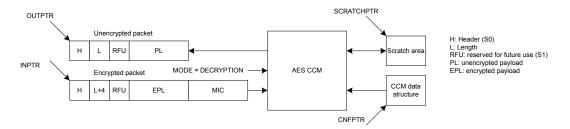


Figure 31: Decryption

6.4.4 AES CCM and RADIO concurrent operation

The CCM module is able to encrypt/decrypt data synchronously to data being transmitted or received on the radio.

In order for the CCM module to run synchronously with the radio, the data rate setting in the MODE on page 109 register needs to match the radio data rate. The settings in this register apply whenever either the KSGEN or CRYPT tasks are triggered.

The data rate setting of the MODE on page 109 register can also be overridden on-the-fly during an ongoing encrypt/decrypt operation by the contents of the RATEOVERRIDE on page 111 register. The data rate setting in this register applies whenever the RATEOVERRIDE task is triggered. This feature can be useful in cases where the radio data rate is changed during an ongoing packet transaction.

6.4.5 Encrypting packets on-the-fly in radio transmit mode

When the AES CCM is encrypting a packet on-the-fly at the same time as the radio is transmitting it, the radio must read the encrypted packet from the same memory location as the AES CCM is writing to.

The OUTPTR on page 110 pointer in the AES CCM must therefore point to the same memory location as the PACKETPTR pointer in the radio, see Configuration of on-the-fly encryption on page 102.

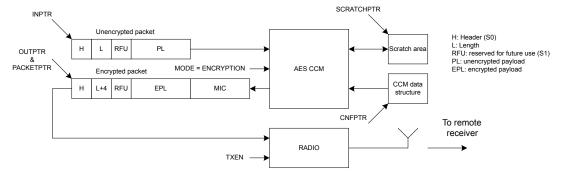


Figure 32: Configuration of on-the-fly encryption

In order to match the RADIO's timing, the KSGEN task must be triggered early enough to allow the key-stream generation to complete before the encryption of the packet shall start.

For short packets (MODE.LENGTH = Default) the KSGEN task must be triggered no later than when the START task in the RADIO is triggered. In addition the shortcut between the ENDKSGEN event and the CRYPT task must be enabled. This use-case is illustrated in On-the-fly encryption of short packets (MODE.LENGTH = Default) using a PPI connection on page 103 using a PPI connection between the READY event in the RADIO and the KSGEN task in the AES CCM.

For long packets (MODE.LENGTH = Extended) the key-stream generation will need to be started even earlier, for example at the time when the TXEN task in the RADIO is triggered.

Important: Refer to Timing specification on page 112 for information about the time needed for generating a key-stream.

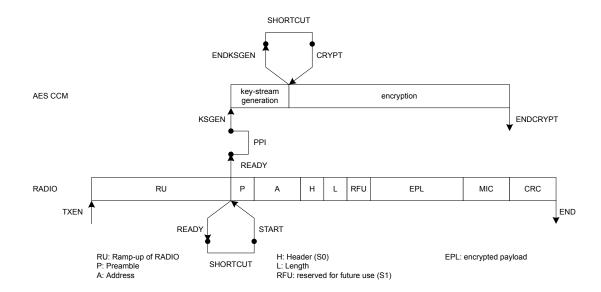


Figure 33: On-the-fly encryption of short packets (MODE.LENGTH = Default) using a PPI connection

6.4.6 Decrypting packets on-the-fly in radio receive mode

When the AES CCM is decrypting a packet on-the-fly at the same time as the RADIO is receiving it, the AES CCM must read the encrypted packet from the same memory location as the RADIO is writing to.

The INPTR on page 110 pointer in the AES CCM must therefore point to the same memory location as the PACKETPTR pointer in the RADIO, see Configuration of on-the-fly decryption on page 103.

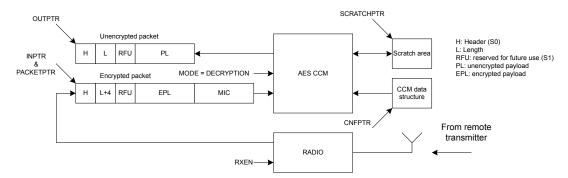


Figure 34: Configuration of on-the-fly decryption

In order to match the RADIO's timing, the KSGEN task must be triggered early enough to allow the key-stream generation to complete before the decryption of the packet shall start.

For short packets (MODE.LENGTH = Default) the KSGEN task must be triggered no later than when the START task in the RADIO is triggered. In addition, the CRYPT task must be triggered no earlier than when the ADDRESS event is generated by the RADIO.

If the CRYPT task is triggered exactly at the same time as the ADDRESS event is generated by the RADIO, the AES CCM will guarantee that the decryption is completed no later than when the END event in the RADIO is generated.

This use-case is illustrated in On-the-fly decryption of short packets (MODE.LENGTH = Default) using a PPI connection on page 104 using a PPI connection between the ADDRESS event in the RADIO and the CRYPT task in the AES CCM. The KSGEN task is triggered from the READY event in the RADIO through a PPI connection.

For long packets (MODE.LENGTH = Extended) the key-stream generation will need to be started even earlier, for example at the time when the RXEN task in the RADIO is triggered.

Important: Refer to Timing specification on page 112 for information about the time needed for generating a key-stream.

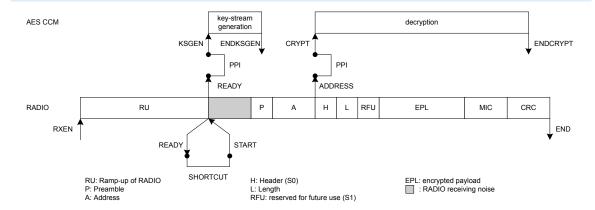


Figure 35: On-the-fly decryption of short packets (MODE.LENGTH = Default) using a PPI connection

6.4.7 CCM data structure

The CCM data structure is located in Data RAM at the memory location specified by the CNFPTR pointer register.

Property	Address offset	Description
KEY	0	16 byte AES key
PKTCTR	16	Octet0 (LSO) of packet counter
	17	Octet1 of packet counter
	18	Octet2 of packet counter
	19	Octet3 of packet counter
	20	Bit 6 – Bit 0: Octet4 (7 most significant bits of packet counter, with Bit 6 being the most
		significant bit) Bit7: Ignored
	21	Ignored
	22	Ignored
	23	Ignored
	24	Bit 0: Direction bit Bit 7 – Bit 1: Zero padded
IV	25	8 byte initialization vector (IV) Octet0 (LSO) of IV, Octet1 of IV, , Octet7 (MSO) of IV

Table 27: CCM data structure overview

The NONCE vector (as specified by the *Bluetooth* Core Specification) will be generated by hardware based on the information specified in the CCM data structure from CCM data structure overview on page 104.

Property	Address offset	Description
HEADER	0	Packet Header
LENGTH	1	Number of bytes in unencrypted payload
RFU	2	Reserved Future Use
PAYLOAD	3	Unencrypted payload

Table 28: Data structure for unencrypted packet

Property	Address offset	Description		
HEADER	0	Packet Header		
LENGTH	1	Number of bytes in encrypted payload including length of MIC		
		Important: LENGTH will be 0 for empty packets since the MIC is not added to empty packets		
RFU	2	Reserved Future Use		
PAYLOAD	3	Encrypted payload		
MIC	3 + payload length	ENCRYPT: 4 bytes encrypted MIC		
		Important: MIC is not added to empty packets		

Table 29: Data structure for encrypted packet

6.4.8 EasyDMA and ERROR event

The CCM implements an EasyDMA mechanism for reading and writing to the RAM.

In cases where the CPU and other EasyDMA enabled peripherals are accessing the same RAM block at the same time, a high level of bus collisions may cause too slow operation for correct on the fly encryption. In this case the ERROR event will be generated.

The EasyDMA will have finished accessing the RAM when the ENDKSGEN and ENDCRYPT events are generated.

If the CNFPTR, SCRATCHPTR, INPTR and the OUTPTR are not pointing to the Data RAM region, an EasyDMA transfer may result in a HardFault or RAM corruption. See Memory on page 17 for more information about the different memory regions.

6.4.9 Registers

Base address	Peripheral	Instance	Description	Configuration	
0x4000F000	CCM	CCM	AES counter with CBC-MAC (CC	CM) mode	
			block encryption		

Table 30: Instances

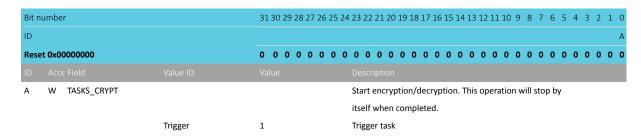
Register	Offset	Description	
TASKS_KSGEN	0x000	Start generation of key-stream. This operation will stop by itself when completed.	
TASKS_CRYPT	0x004	Start encryption/decryption. This operation will stop by itself when completed.	
TASKS_STOP	0x008	Stop encryption/decryption	
TASKS_RATEOVERRIDE	0x00C	Override DATARATE setting in MODE register with the contents of the RATEOVERRIDE register	
		for any ongoing encryption/decryption	
EVENTS_ENDKSGEN	0x100	Key-stream generation complete	
EVENTS_ENDCRYPT	0x104	Encrypt/decrypt complete	
EVENTS_ERROR	0x108	CCM error event	Deprecated
SHORTS	0x200	Shortcuts between local events and tasks	
INTENSET	0x304	Enable interrupt	
INTENCLR	0x308	Disable interrupt	
MICSTATUS	0x400	MIC check result	
ENABLE	0x500	Enable	
MODE	0x504	Operation mode	
CNFPTR	0x508	Pointer to data structure holding AES key and NONCE vector	
INPTR	0x50C	Input pointer	
OUTPTR	0x510	Output pointer	

Register	Offset	Description
SCRATCHPTR	0x514	Pointer to data area used for temporary storage
MAXPACKETSIZE	0x518	Length of key-stream generated when MODE.LENGTH = Extended.
RATEOVERRIDE	0x51C	Data rate override setting.

Table 31: Register overview

6.4.9.1 TASKS_KSGEN

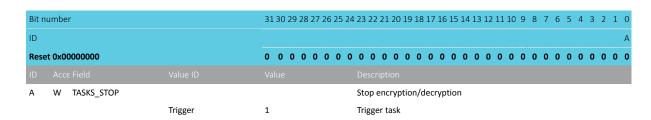
Address offset: 0x000


Start generation of key-stream. This operation will stop by itself when completed.

Bit no	umber		31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	t 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	W TASKS_KSGEN			Start generation of key-stream. This operation will stop by
				itself when completed.
		Trigger	1	Trigger task

6.4.9.2 TASKS CRYPT

Address offset: 0x004


Start encryption/decryption. This operation will stop by itself when completed.

6.4.9.3 TASKS STOP

Address offset: 0x008

Stop encryption/decryption

6.4.9.4 TASKS_RATEOVERRIDE

Address offset: 0x00C

Override DATARATE setting in MODE register with the contents of the RATEOVERRIDE register for any ongoing encryption/decryption

Bit number	31 30 29 28 27 26 25 24 23	3 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		А
Reset 0x00000000	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value II		escription
A W TASKS_RATEOVERRIDE	0	verride DATARATE setting in MODE register with the
	cc	ontents of the RATEOVERRIDE register for any ongoing
	er	ncryption/decryption
Trigger	1 Tr	igger task

6.4.9.5 EVENTS_ENDKSGEN

Address offset: 0x100

Key-stream generation complete

Bit n	umber		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW EVENTS_ENDKSGEN			Key-stream generation complete
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.4.9.6 EVENTS_ENDCRYPT

Address offset: 0x104

Encrypt/decrypt complete

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW EVENTS_ENDCRYPT			Encrypt/decrypt complete
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.4.9.7 EVENTS_ERROR (Deprecated)

Address offset: 0x108

CCM error event

Bit n	umber		313	30 2	9 28	27	26	25	24	23 :	22	21	20	19	18	17	16	15	14	13 :	12 1	11	0 9	8	7	6	5	4	3 2	2 1	. 0
ID																															Α
Rese	t 0x00000000		0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0 (0	0
ID																															
Α	RW EVENTS_ERROR									CCI	Μe	erro	r e	ver	nt														Dep	reca	ated
		NotGenerated	0							Eve	ent	not	ge	ne	rate	ed															
		Generated	1							Eve	ent	ger	nera	ate	d																

6.4.9.8 SHORTS

Address offset: 0x200

Shortcuts between local events and tasks

Bit number		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			A
Reset 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A RW ENDKSGEN_CRYPT			Shortcut between event ENDKSGEN and task CRYPT
	Disabled	0	Disable shortcut
	Enabled	1	Enable shortcut

6.4.9.9 INTENSET

Address offset: 0x304 Enable interrupt

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4	4 3 2 1 0
ID					СВА
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0
ID					
Α	RW ENDKSGEN			Write '1' to enable interrupt for event ENDKSGEN	
		Set	1	Enable	
		Disabled	0	Read: Disabled	
		Enabled	1	Read: Enabled	
В	RW ENDCRYPT			Write '1' to enable interrupt for event ENDCRYPT	
		Set	1	Enable	
		Disabled	0	Read: Disabled	
		Enabled	1	Read: Enabled	
С	RW ERROR			Write '1' to enable interrupt for event ERROR	Deprecated
		Set	1	Enable	
		Disabled	0	Read: Disabled	
		Enabled	1	Read: Enabled	

6.4.9.10 INTENCLR

Address offset: 0x308

Disable interrupt

Rit r	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4	3 2 1 0
ID					СВА
Res	et 0x00000000		0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0
ID					
Α	RW ENDKSGEN			Write '1' to disable interrupt for event ENDKSGEN	
		Clear	1	Disable	
		Disabled	0	Read: Disabled	
		Enabled	1	Read: Enabled	
В	RW ENDCRYPT			Write '1' to disable interrupt for event ENDCRYPT	
		Clear	1	Disable	
		Disabled	0	Read: Disabled	
		Enabled	1	Read: Enabled	
С	RW ERROR			Write '1' to disable interrupt for event ERROR	Deprecated
		Clear	1	Disable	
		Disabled	0	Read: Disabled	
		Enabled	1	Read: Enabled	

6.4.9.11 MICSTATUS

Address offset: 0x400

MIC check result

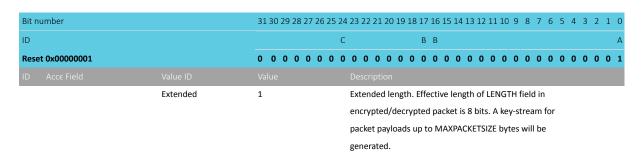
Bit no	umber			313	0 29	28	27 2	6 25	24	23	22 :	21 2	20 1	9 18	17	16	15 1	4 13	12	11 1	0 9	8	7	6	5	4 3	2	1	0
ID																													Α
Rese	t 0x000000	000		0 (0 0	0	0 (0	0	0	0	0	0 0	0	0	0	0	0	0	0 (0	0	0	0	0	0 0	0	0	0
ID																													
Α	R MIC	STATUS								The	e re	sult	of t	the	MIC	che	eck	perf	orme	ed d	urin	g th	e p	revi	ous				
										dec	cryp	otio	n op	era	tion														
			CheckFailed	0						MI	C cł	neck	(fai	led															
			CheckPassed	1						MI	C ch	neck	с ра	ssec	ł														

6.4.9.12 ENABLE

Address offset: 0x500

Enable

Bit number		31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			A A
Reset 0x00000000		0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A RW ENABLE			Enable or disable CCM
	Disabled	0	Disable
	Enabled	2	Enable


6.4.9.13 MODE

Address offset: 0x504

Operation mode

Bit r	number		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			C	В В
Res	et 0x00000001		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW MODE			The mode of operation to be used. The settings in this
				register apply whenever either the KSGEN or CRYPT tasks
				are triggered.
		Encryption	0	AES CCM packet encryption mode
		Decryption	1	AES CCM packet decryption mode
В	RW DATARATE			Radio data rate that the CCM shall run synchronous with
		1Mbit	0	1 Mbps
		2Mbit	1	2 Mbps
		125Kbps	2	125 Kbps
		500Kbps	3	500 Kbps
С	RW LENGTH			Packet length configuration
		Default	0	Default length. Effective length of LENGTH field in
				encrypted/decrypted packet is 5 bits. A key-stream for
				packet payloads up to 27 bytes will be generated.

6.4.9.14 CNFPTR

Address offset: 0x508

Pointer to data structure holding AES key and NONCE vector

Bit n	umber	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3	2 1 0
ID		A A A A A A A A A A A A A A A A A A A	AAA
Rese	t 0x00000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0
ID			
Α	RW CNFPTR	Pointer to the data structure holding the AES key and	
		the CCM NONCE vector (see Table 1 CCM data structure	
		overview)	

6.4.9.15 INPTR

Address offset: 0x50C

Input pointer

Bit n	ımber	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		A A A A A A A A A A A A A A A A A A A
Rese	t 0x00000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID		Value Description
Α	RW INPTR	Input pointer

6.4.9.16 OUTPTR

Address offset: 0x510

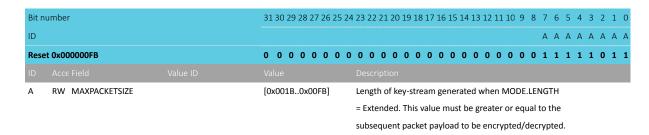
Output pointer

7,000 7,010	
ID Acce Field	Value Description
Reset 0x00000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID	A A A A A A A A A A A A A A A A A A A
Bit number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.4.9.17 SCRATCHPTR

Address offset: 0x514

Pointer to data area used for temporary storage



Bit nu	umber	3	1 30	29	28	3 27	26	25	24	23	22	21 2	0 1	9 1	8 1	7 16	15	14	13	12	11	10	9	8	7	6	5	4	3 2	2 1	1 0
ID		А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α,	Δ,	Δ <i>A</i>	Δ Δ	A	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	A A	A A	4 A
Reset	0x00000000	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0
ID																															
Α	RW SCRATCHPTR									Ро	inte	r to	a s	crat	tch	data	a ar	ea	use	d fo	or te	emp	oor	ary	sto	ora	ge				
										du	ring	key	/-st	rea	n g	ene	rati	ion,	, MI	C ge	ene	erat	ion	an	ıd						
										en	cryp	otio	n/d	ecr	ypti	ion.															
										Th	e sc	rato	h a	rea	is u	ısed	l fo	r te	mp	orar	ry s	tora	age	e of	da	ta					
										du	ring	key	/-st	rea	n g	ene	rati	ion	and	l en	icry	ptio	on.								
										١٨/١	hen	MC	IDE	IEN	uct	гы –	De	fau	ıl+ s	. cn	200	of	12	hvd	tor						
											requ																				
											xte		u (.	10 +	· IVI/	AXP	ACI	VE I	SIZE	נט (ב	y te	S OT	STC	วเส	ge i	15					
										rec	quir	ed.																			

6.4.9.18 MAXPACKETSIZE

Address offset: 0x518

Length of key-stream generated when MODE.LENGTH = Extended.

6.4.9.19 RATEOVERRIDE

Address offset: 0x51C

Data rate override setting.

Override value to be used instead of the setting of MODE.DATARATE. This override value applies when the RATEOVERRIDE task is triggered.

Bit r	it number		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A A
Res	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW RATEOVERRIDE			Data rate override setting.
		1Mbit	0	1 Mbps
		2Mbit	1	2 Mbps
		125Kbps	2	125 Kbps
		500Kbps	3	500 Kbps

6.4.10 Electrical specification

6.4.10.1 Timing specification

Symbol	Description	Min.	Тур.	Max.	Units
t _{kgen}	Time needed for key-stream generation (given priority			50	μs
	access to destination RAM block).				

6.5 COMP — Comparator

The comparator (COMP) compares an input voltage (VIN+) against a second input voltage (VIN-). VIN+ can be derived either from an analog input pin (AIN0-AIN6) or VDDH/5. VIN- can be derived from multiple sources depending on the operation mode of the comparator.

Main features of the comparator are:

- Input range from 0 V to VDD
- Single-ended mode
 - Fully flexible hysteresis using a 64-level reference ladder
- Differential mode
 - · Configurable hysteresis
- Reference inputs (VREF):
 - VDD
 - External reference from AINO to AIN7 (between 0 V and VDD)
 - Internal references 1.2 V, 1.8 V and 2.4 V
- Three speed/power consumption modes: low-power, normal and high-speed
- · Event generation on output changes
 - UP event on VIN- > VIN+
 - DOWN event on VIN- < VIN+
 - · CROSS event on VIN+ and VIN- crossing
 - · READY event on core and internal reference (if used) ready

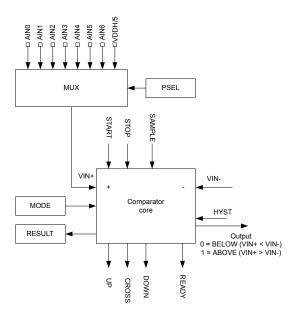


Figure 36: Comparator overview

Once enabled (using the ENABLE register), the comparator is started by triggering the START task and stopped by triggering the STOP task. The comparator will generate a READY event to indicate when it is ready for use and the output is correct. The delay between START and READY is t_{INT_REF,START} if an internal reference is selected, or t _{COMP,START} if an external reference is used. When the COMP module is started, events will be generated every time VIN+ crosses VIN-.

Operation modes

The comparator can be configured to operate in two main operation modes, differential mode and single-ended mode. See the MODE register for more information. In both operation modes, the comparator can operate in different speed and power consumption modes (low-power, normal and high-speed). High-speed mode will consume more power compared to low-power mode, and low-power mode will result in slower response time compared to high-speed mode.

Use the PSEL register to select any of the AINO-AIN6 pins (or VDDH/5) as VIN+ input, regardless of the operation mode selected for the comparator. The source of VIN- depends on which operation mode is used:

- Differential mode: Derived directly from AINO to AIN7
- Single-ended mode: Derived from VREF. VREF can be derived from VDD, AINO-AIN7 or internal 1.2 V,
 1.8 V and 2.4 V references.

The selected analog pins will be acquired by the comparator once it is enabled.

An optional hysteresis on VIN+ and VIN- can be enabled when the module is used in differential mode through the HYST register. In single-ended mode, VUP and VDOWN thresholds can be set to implement a hysteresis using the reference ladder (see Comparator in single-ended mode on page 115). This hysteresis is in the order of magnitude of V_{DIFFHYST}, and shall prevent noise on the signal to create unwanted events. See Hysteresis example where VIN+ starts below VUP on page 116 for illustration of the effect of an active hysteresis on a noisy input signal.

An upward crossing will generate an UP event and a downward crossing will generate a DOWN event. The CROSS event will be generated every time there is a crossing, independent of direction.

The immediate value of the comparator can be sampled to RESULT register by triggering the SAMPLE task.

6.5.1 Differential mode

In differential mode, the reference input VIN- is derived directly from one of the AINx pins.

Before enabling the comparator via the ENABLE register, the following registers must be configured for the differential mode:

- PSEL
- MODE
- EXTREFSEL

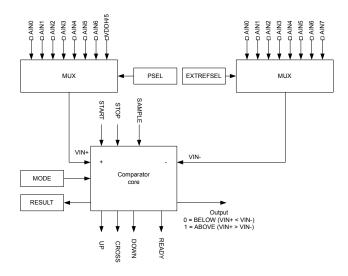


Figure 37: Comparator in differential mode

Note: Depending on the device, not all the analog inputs may be available for each MUX. See definitions for PSEL and EXTREFSEL for more information about which analog pins are available on a particular device.

When HYST register is turned on while in this mode, the output of the comparator (and associated events) will change from ABOVE to BELOW whenever VIN+ becomes lower than VIN- - ($V_{DIFFHYST}$ / 2). It will also change from BELOW to ABOVE whenever VIN+ becomes higher than VIN- + ($V_{DIFFHYST}$ / 2). This behavior is illustrated in Hysteresis enabled in differential mode on page 114.

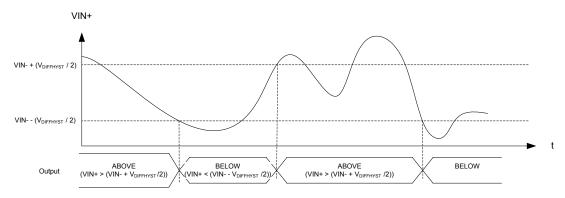


Figure 38: Hysteresis enabled in differential mode

6.5.2 Single-ended mode

In single-ended mode, VIN- is derived from the reference ladder.

Before enabling the comparator via the ENABLE register, the following registers must be configured for the single-ended mode:

- PSEL
- MODE
- REFSEL
- EXTREFSEL
- TH

The reference ladder uses the reference voltage (VREF) to derive two new voltage references, VUP and VDOWN. VUP and VDOWN are configured using THUP and THDOWN respectively in the TH register. VREF can be derived from any of the available reference sources, configured using the EXTREFSEL and REFSEL registers as illustrated in Comparator in single-ended mode on page 115. When AREF is selected in the REFSEL register, the EXTREFSEL register is used to select one of the AINO-AIN7 analog input pins as reference input. The selected analog pins will be acquired by the comparator once it is enabled.

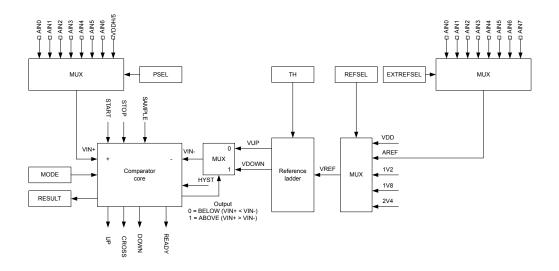


Figure 39: Comparator in single-ended mode

Note: Depending on the device, not all the analog inputs may be available for each MUX. See definitions for PSEL and EXTREFSEL for more information about which analog pins are available on a particular device.

When the comparator core detects that VIN+ > VIN-, i.e. ABOVE as per the RESULT register, VIN- will switch to VDOWN. When VIN+ falls below VIN- again, VIN- will be switched back to VUP. By specifying VUP larger than VDOWN, a hysteresis can be generated as illustrated in Hysteresis example where VIN+ starts below VUP on page 116 and Hysteresis example where VIN+ starts above VUP on page 116.

Writing to HYST has no effect in single-ended mode, and the content of this register is ignored.

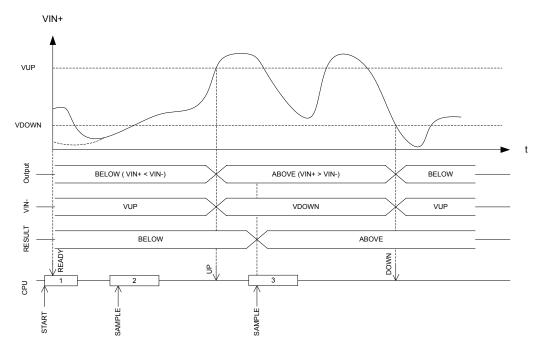


Figure 40: Hysteresis example where VIN+ starts below VUP

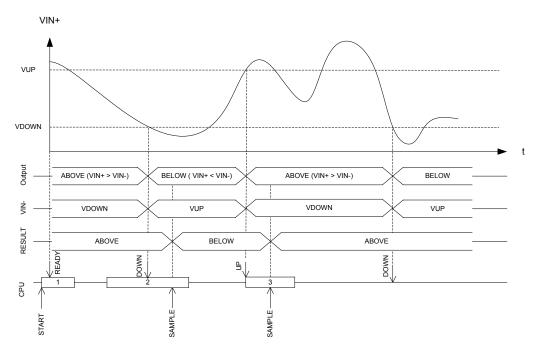


Figure 41: Hysteresis example where VIN+ starts above VUP

6.5.3 Registers

Base address	Peripheral	Instance	Description	Configuration	
0x40013000	COMP	COMP	General purpose comparator		

Table 32: Instances

Register	Offset	Description
TASKS_START	0x000	Start comparator

Register	Offset	Description
TASKS_STOP	0x004	Stop comparator
TASKS_SAMPLE	0x008	Sample comparator value
EVENTS_READY	0x100	COMP is ready and output is valid
EVENTS_DOWN	0x104	Downward crossing
EVENTS_UP	0x108	Upward crossing
EVENTS_CROSS	0x10C	Downward or upward crossing
SHORTS	0x200	Shortcuts between local events and tasks
INTEN	0x300	Enable or disable interrupt
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt
RESULT	0x400	Compare result
ENABLE	0x500	COMP enable
PSEL	0x504	Pin select
REFSEL	0x508	Reference source select for single-ended mode
EXTREFSEL	0x50C	External reference select
TH	0x530	Threshold configuration for hysteresis unit
MODE	0x534	Mode configuration
HYST	0x538	Comparator hysteresis enable

Table 33: Register overview

6.5.3.1 TASKS_START

Address offset: 0x000 Start comparator

Bit n	umber		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	W TASKS_START			Start comparator
		Trigger	1	Trigger task

6.5.3.2 TASKS_STOP

Address offset: 0x004 Stop comparator

Bit n	umber		31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 C
ID				A
Rese	et 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	W TASKS_STOP			Stop comparator
		Trigger	1	Trigger task

6.5.3.3 TASKS_SAMPLE

Address offset: 0x008

Sample comparator value

Bit no	umb	oer			313	30 2	9 2	28	27	26	25	5 24	4 2	3 2	22	21	. 21	0 1	9 1	18	17	16	15	1	4 1	3 1	2 :	11 :	LO	9	8	7	6	5	4	3	2	1	0
ID																																							Α
Rese	t Ox	000	000000		0	0 ()	0	0	0	0	0) (0	0	0	C)	0	0	0	0	C	C) (0	0	0	0	0	0	0	0	0	0	0	0	0
ID																																							
Α	W		TASKS_SAMPLE										S	am	ıpl	e (COI	np	ar	ato	r v	alı	ıe																
				Trigger	1								Т	rig	ge	r t	as	k																					

6.5.3.4 EVENTS_READY

Address offset: 0x100

COMP is ready and output is valid

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				Α
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW EVENTS_READY			COMP is ready and output is valid
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.5.3.5 EVENTS_DOWN

Address offset: 0x104

Downward crossing

Bit n	umber		31 30	29 2	8 27	26 2	5 24	23	22 2	21 20) 19	18 1	17 1	5 15	14	13 1	2 11	10	9 8	7	6	5	4	3	2 :	1 0
ID																										Α
Rese	et 0x00000000		0 0	0 (0	0 0	0	0	0	0 0	0	0	0 0	0	0	0 (0	0	0 0	0	0	0	0	0	0 (0 0
ID																										
Α	RW EVENTS_DOWN							Do	wnv	vard	cro	ssing	3													
		NotGenerated	0					Eve	ent r	not g	gene	rate	d													
		Generated	1					Eve	ent g	gene	rate	d														

6.5.3.6 EVENTS_UP

Address offset: 0x108

Upward crossing

Bit number	31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		A
Reset 0x00000000	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		Description
A RW EVENTS_UP		Upward crossing
NotGenerated	0	Event not generated
Generated	1	Event generated

6.5.3.7 EVENTS_CROSS

Address offset: 0x10C

Downward or upward crossing

Bit numbe	er		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Reset 0x0	0000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acc				
A RW	EVENTS_CROSS			Downward or upward crossing
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.5.3.8 SHORTS

Address offset: 0x200

Shortcuts between local events and tasks

Bit n	umber		31 30 29 28 27 26 25 2	14 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				E D C B A
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW READY_SAMPLE			Shortcut between event READY and task SAMPLE
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
В	RW READY_STOP			Shortcut between event READY and task STOP
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
С	RW DOWN_STOP			Shortcut between event DOWN and task STOP
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
D	RW UP_STOP			Shortcut between event UP and task STOP
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
Е	RW CROSS_STOP			Shortcut between event CROSS and task STOP
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut

6.5.3.9 INTEN

Address offset: 0x300

Enable or disable interrupt

Bit r	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				D C B A
Res	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW READY			Enable or disable interrupt for event READY
		Disabled	0	Disable
		Enabled	1	Enable
В	RW DOWN			Enable or disable interrupt for event DOWN
		Disabled	0	Disable
		Enabled	1	Enable
С	RW UP			Enable or disable interrupt for event UP
		Disabled	0	Disable
		Enabled	1	Enable
D	RW CROSS			Enable or disable interrupt for event CROSS
		Disabled	0	Disable

Bit number		31 30 29 28 27	7 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			D C B A
Reset 0x00000000		0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
	Fnabled		Enable

6.5.3.10 INTENSET

Address offset: 0x304 Enable interrupt

Bit r	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				D C B A
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW READY			Write '1' to enable interrupt for event READY
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
В	RW DOWN			Write '1' to enable interrupt for event DOWN
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
С	RW UP			Write '1' to enable interrupt for event UP
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
D	RW CROSS			Write '1' to enable interrupt for event CROSS
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

6.5.3.11 INTENCLR

Address offset: 0x308

Disable interrupt

Bit r	number		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				D C B A
Res	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
				Description
Α	RW READY			Write '1' to disable interrupt for event READY
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
В	RW DOWN			Write '1' to disable interrupt for event DOWN
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
С	RW UP			Write '1' to disable interrupt for event UP
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

Bit number		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			D C B A
Reset 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
D RW CROSS			Write '1' to disable interrupt for event CROSS
	Clear	1	
	Clear	1	Disable
	Disabled	0	Disable Read: Disabled

6.5.3.12 RESULT

Address offset: 0x400

Compare result

Bit number	31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		A
Reset 0x00000000	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		
A R RESULT		Result of last compare. Decision point SAMPLE task.
Below	0	Input voltage is below the threshold (VIN+ < VIN-)
Above	1	Input voltage is above the threshold (VIN+ > VIN-)

6.5.3.13 ENABLE

Address offset: 0x500

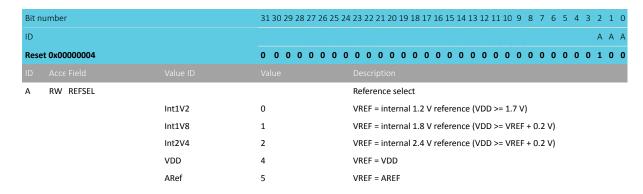
COMP enable

Bit number	31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		A A
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		Description
A RW ENABLE		Enable or disable COMP
Disabled	0	Disable
Enabled	2	Enable

6.5.3.14 PSEL

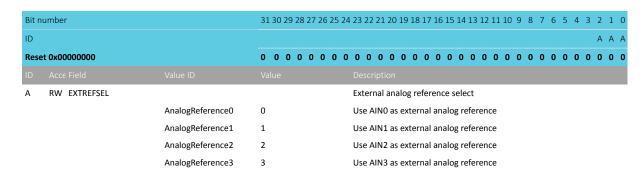
Address offset: 0x504

Pin select


Bit r	number		31 30 29 28 27 2	6 25 2	4 23 22	21 2	20 19	18	17 :	16 1	15 1	4 13	3 12	11	10 9	8	7	6	5	4	3	2	1 0
ID																						Α	АА
Res	et 0x00000000		0 0 0 0 0 0	0 0	0 0	0 (0 0	0	0	0	0 (0	0	0	0 0	0	0	0	0	0	0	0	0 0
ID																							
Α	RW PSEL				Analo	og pir	n sel	ect															
		AnalogInput0	0		AIN0	selec	cted	as a	nal	og i	npu	t											
		AnalogInput1	1		AIN1	selec	cted	as a	nal	og i	npu	t											
		AnalogInput2	2		AIN2	selec	cted	as a	nal	og i	npu	t											
		AnalogInput3	3		AIN3	selec	cted	as a	nal	og i	npu	t											
		VddhDiv5	7		VDDH	1/5 se	elect	ted a	as a	nalo	og iı	nput	t										

6.5.3.15 REFSEL

Address offset: 0x508


Reference source select for single-ended mode

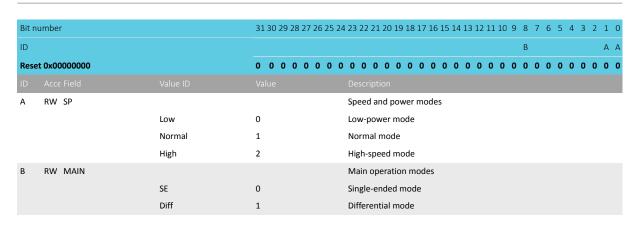
6.5.3.16 EXTREFSEL

Address offset: 0x50C

External reference select

6.5.3.17 TH

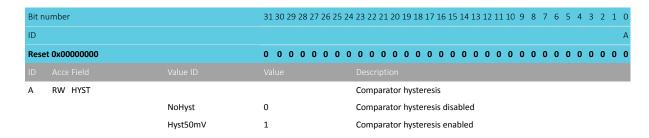
Address offset: 0x530


Threshold configuration for hysteresis unit

Bit r	number	31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			B B B B B B B A A A A A
Rese	et 0x00000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID			
Α	RW THDOWN	[63:0]	VDOWN = (THDOWN+1)/64*VREF
В	RW THUP	[63:0]	VUP = (THUP+1)/64*VREF

6.5.3.18 MODE

Address offset: 0x534 Mode configuration



6.5.3.19 HYST

Address offset: 0x538

Comparator hysteresis enable

6.5.4 Electrical specification

6.5.4.1 COMP Electrical Specification

Symbol	Description	Min.	Тур.	Max.	Units
t _{PROPDLY,LP}	Propagation delay, low-power mode ¹²		0.6		μs
t _{PROPDLY,N}	Propagation delay, normal mode ¹²		0.2		μs
t _{PROPDLY,HS}	Propagation delay, high-speed mode ¹²		0.1		μs
$V_{DIFFHYST}$	Optional hysteresis applied to differential input	10	30	90	mV
$V_{VDD-VREF}$	Required difference between VDD and a selected VREF, VDD	0.3			V
	> VREF				
t _{INT_REF,START}	Startup time for the internal bandgap reference		50	80	μs
E _{INT_REF}	Internal bandgap reference error	-3		3	%
E _{VDDH_DIV5}	VddhDiv5 resistor ladder tolerance		±1		%
V _{INPUTOFFSET}	Input offset	-15		15	mV
t _{COMP,START}	Startup time for the comparator core		3		μs

6.6 ECB — AES electronic codebook mode encryption

The AES electronic codebook mode encryption (ECB) can be used for a range of cryptographic functions like hash generation, digital signatures, and keystream generation for data encryption/decryption. The ECB encryption block supports 128 bit AES encryption (encryption only, not decryption).

¹² Propagation delay is with 10 mV overdrive.

AES ECB operates with EasyDMA access to system Data RAM for in-place operations on cleartext and ciphertext during encryption. ECB uses the same AES core as the CCM and AAR blocks and is an asynchronous operation which may not complete if the AES core is busy.

AES ECB features:

- 128 bit AES encryption
- Supports standard AES ECB block encryption
- Memory pointer support
- · DMA data transfer

AES ECB performs a 128 bit AES block encrypt. At the STARTECB task, data and key is loaded into the algorithm by EasyDMA. When output data has been written back to memory, the ENDECB event is triggered.

AES ECB can be stopped by triggering the STOPECB task.

6.6.1 Shared resources

The ECB, CCM, and AAR share the same AES module. The ECB will always have lowest priority and if there is a sharing conflict during encryption, the ECB operation will be aborted and an ERRORECB event will be generated.

6.6.2 EasyDMA

The ECB implements an EasyDMA mechanism for reading and writing to the Data RAM. This DMA cannot access the program memory or any other parts of the memory area except RAM.

If the ECBDATAPTR is not pointing to the Data RAM region, an EasyDMA transfer may result in a HardFault or RAM corruption. See Memory on page 17 for more information about the different memory regions.

The EasyDMA will have finished accessing the Data RAM when the ENDECB or ERRORECB is generated.

6.6.3 ECB data structure

Input to the block encrypt and output from the block encrypt are stored in the same data structure. ECBDATAPTR should point to this data structure before STARTECB is initiated.

Property	Address offset	Description
KEY	0	16 byte AES key
CLEARTEXT	16	16 byte AES cleartext input block
CIPHERTEXT	32	16 byte AES ciphertext output block

Table 34: FCB data structure overview

6.6.4 Registers

Base address	Peripheral	Instance	Description	Configuration			
0x4000E000	ECB	ECB	AES electronic code book (ECB) mode				
			block encryption				

Table 35: Instances

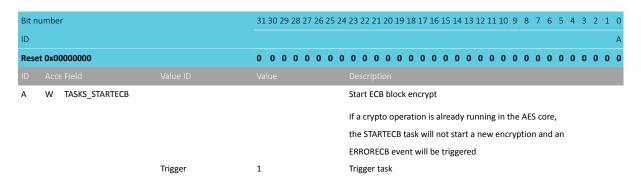
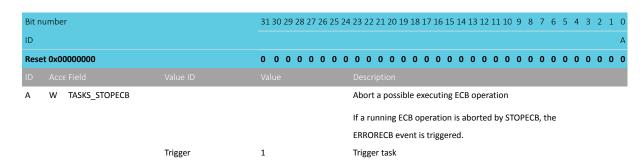

Register	Offset	Description
TASKS_STARTECB	0x000	Start ECB block encrypt
TASKS_STOPECB	0x004	Abort a possible executing ECB operation
EVENTS_ENDECB	0x100	ECB block encrypt complete
EVENTS_ERRORECB	0x104	ECB block encrypt aborted because of a STOPECB task or due to an error
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt
ECBDATAPTR	0x504	ECB block encrypt memory pointers

Table 36: Register overview

6.6.4.1 TASKS STARTECB

Address offset: 0x000 Start ECB block encrypt

If a crypto operation is already running in the AES core, the STARTECB task will not start a new encryption and an ERRORECB event will be triggered

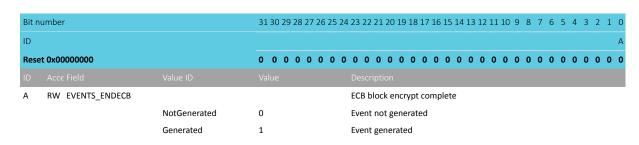


6.6.4.2 TASKS STOPECB

Address offset: 0x004

Abort a possible executing ECB operation

If a running ECB operation is aborted by STOPECB, the ERRORECB event is triggered.



6.6.4.3 EVENTS ENDECB

Address offset: 0x100

ECB block encrypt complete

6.6.4.4 EVENTS_ERRORECB

Address offset: 0x104

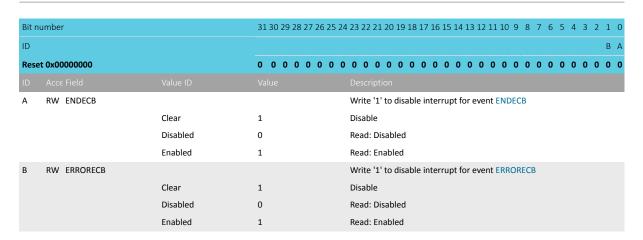
ECB block encrypt aborted because of a STOPECB task or due to an error

Bit n	umber		31 30	29	28	27	26	25 :	24 2	23 :	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7 (5 5	5 4	3	2	1 0
ID																															А
Rese	t 0x00000000		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0	0 0
ID																															
Α	RW EVENTS_ERRORECB								E	ECE	3 b	loc	k e	ncr	ypt	ab	ort	ted	be	cau	se o	of a	STO	OPE	СВ	tas	k oı	r			
									C	due	e to	o ar	n er	rroi	r																
		NotGenerated	0						E	Eve	nt	no	t ge	ene	rat	ed															
		Generated	1						E	Eve	nt	gei	ner	ate	d																

6.6.4.5 INTENSET

Address offset: 0x304

Enable interrupt


Bit number		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			В А
Reset 0x00000000		0 0 0 0 0 0 0 0	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$
ID Acce Field V			Description
A RW ENDECB			Write '1' to enable interrupt for event ENDECB
Se	et	1	Enable
D	isabled	0	Read: Disabled
E	nabled	1	Read: Enabled
B RW ERRORECB			Write '1' to enable interrupt for event ERRORECB
Se	et	1	Enable
D	isabled	0	Read: Disabled
E	nabled	1	Read: Enabled

6.6.4.6 INTENCLR

Address offset: 0x308

Disable interrupt

6.6.4.7 ECBDATAPTR

Address offset: 0x504

ECB block encrypt memory pointers

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			A A A A A A A	
Rese	t 0x00000000		0 0 0 0 0 0 0	
ID	Acce Field	Value ID	Value	Description
Α	RW ECBDATAPTR			Pointer to the ECB data structure (see Table 1 ECB data

structure overview)

6.6.5 Electrical specification

6.6.5.1 ECB Electrical Specification

Symbol	Description	Min.	Тур.	Max.	Units
t _{ECB}	Run time per 16 byte block in all modes			7.2	μs

6.7 EGU — Event generator unit

Event generator unit (EGU) provides support for interlayer signaling. This means providing support for atomic triggering of both CPU execution and hardware tasks, from both firmware (by CPU) and hardware (by PPI). This feature can, for instance, be used for triggering CPU execution at a lower priority execution from a higher priority execution, or to handle a peripheral's interrupt service routine (ISR) execution at a lower priority for some of its events. However, triggering any priority from any priority is possible.

Listed here are the main EGU features:

· Software-enabled interrupt triggering

4463 014 v0.7

- Separate interrupt vectors for every EGU instance
- Up to 16 separate event flags per interrupt for multiplexing

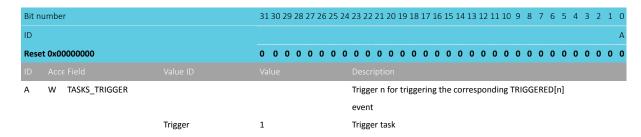
Each instance of EGU implements a set of tasks which can individually be triggered to generate the corresponding event, for example, the corresponding event for TASKS_TRIGGER[n] is EVENTS_TRIGGERED[n]. See Instances on page 128 for a list of EGU instances.

6.7.1 Registers

Base address	Peripheral	Instance	Description	Configuration
0x40014000	EGU	EGU0	Event generator unit 0	
0x40015000	EGU	EGU1	Event generator unit 1	
0x40016000	EGU	EGU2	Event generator unit 2	
0x40017000	EGU	EGU3	Event generator unit 3	
0x40018000	EGU	EGU4	Event generator unit 4	
0x40019000	EGU	EGU5	Event generator unit 5	

Table 37: Instances

Register	Offset	Description
TASKS_TRIGGER[0]	0x000	Trigger 0 for triggering the corresponding TRIGGERED[0] event
TASKS_TRIGGER[1]	0x004	Trigger 1 for triggering the corresponding TRIGGERED[1] event
TASKS_TRIGGER[2]	0x008	Trigger 2 for triggering the corresponding TRIGGERED[2] event
TASKS_TRIGGER[3]	0x00C	Trigger 3 for triggering the corresponding TRIGGERED[3] event
TASKS_TRIGGER[4]	0x010	Trigger 4 for triggering the corresponding TRIGGERED[4] event
TASKS_TRIGGER[5]	0x014	Trigger 5 for triggering the corresponding TRIGGERED[5] event
TASKS_TRIGGER[6]	0x018	Trigger 6 for triggering the corresponding TRIGGERED[6] event
TASKS_TRIGGER[7]	0x01C	Trigger 7 for triggering the corresponding TRIGGERED[7] event
TASKS_TRIGGER[8]	0x020	Trigger 8 for triggering the corresponding TRIGGERED[8] event
TASKS_TRIGGER[9]	0x024	Trigger 9 for triggering the corresponding TRIGGERED[9] event
TASKS_TRIGGER[10]	0x028	Trigger 10 for triggering the corresponding TRIGGERED[10] event
TASKS_TRIGGER[11]	0x02C	Trigger 11 for triggering the corresponding TRIGGERED[11] event
TASKS_TRIGGER[12]	0x030	Trigger 12 for triggering the corresponding TRIGGERED[12] event
TASKS_TRIGGER[13]	0x034	Trigger 13 for triggering the corresponding TRIGGERED[13] event
TASKS_TRIGGER[14]	0x038	Trigger 14 for triggering the corresponding TRIGGERED[14] event
TASKS_TRIGGER[15]	0x03C	Trigger 15 for triggering the corresponding TRIGGERED[15] event
EVENTS_TRIGGERED[0]	0x100	Event number 0 generated by triggering the corresponding TRIGGER[0] task
EVENTS_TRIGGERED[1]	0x104	Event number 1 generated by triggering the corresponding TRIGGER[1] task
EVENTS_TRIGGERED[2]	0x108	Event number 2 generated by triggering the corresponding TRIGGER[2] task
EVENTS_TRIGGERED[3]	0x10C	Event number 3 generated by triggering the corresponding TRIGGER[3] task
EVENTS_TRIGGERED[4]	0x110	Event number 4 generated by triggering the corresponding TRIGGER[4] task
EVENTS_TRIGGERED[5]	0x114	Event number 5 generated by triggering the corresponding TRIGGER[5] task
EVENTS_TRIGGERED[6]	0x118	Event number 6 generated by triggering the corresponding TRIGGER[6] task
EVENTS_TRIGGERED[7]	0x11C	Event number 7 generated by triggering the corresponding TRIGGER[7] task
EVENTS_TRIGGERED[8]	0x120	Event number 8 generated by triggering the corresponding TRIGGER[8] task
EVENTS_TRIGGERED[9]	0x124	Event number 9 generated by triggering the corresponding TRIGGER[9] task
EVENTS_TRIGGERED[10]	0x128	Event number 10 generated by triggering the corresponding TRIGGER[10] task
EVENTS_TRIGGERED[11]	0x12C	Event number 11 generated by triggering the corresponding TRIGGER[11] task
EVENTS_TRIGGERED[12]	0x130	Event number 12 generated by triggering the corresponding TRIGGER[12] task
EVENTS_TRIGGERED[13]	0x134	Event number 13 generated by triggering the corresponding TRIGGER[13] task
EVENTS_TRIGGERED[14]	0x138	Event number 14 generated by triggering the corresponding TRIGGER[14] task
EVENTS_TRIGGERED[15]	0x13C	Event number 15 generated by triggering the corresponding TRIGGER[15] task
INTEN	0x300	Enable or disable interrupt
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt


Table 38: Register overview

6.7.1.1 TASKS_TRIGGER[n] (n=0..15)

Address offset: $0x000 + (n \times 0x4)$

Trigger n for triggering the corresponding TRIGGERED[n] event

6.7.1.2 EVENTS_TRIGGERED[n] (n=0..15)

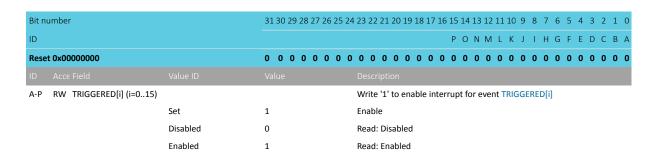
Address offset: $0x100 + (n \times 0x4)$

Event number n generated by triggering the corresponding TRIGGER[n] task

Bit n	umber		31 30	29 28	3 27 :	26 2	25 24	1 23	3 22	21	20	19 1	18 1	7 16	5 15	14	13	12 1	.1 10	9	8	7	6 5	5 4	3	2	1 0
ID																											Α
Rese	t 0x00000000		0 0	0 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0 0
ID																											
Α	RW EVENTS_TRIGGERED							Ev	/ent	nu	mb	er n	ger	era	ted	by	trig	geri	ng t	ne c	orre	espo	ond	ing			
								TR	RIGO	GER	[n]	tasl	<														
		NotGenerated	0					Ev	/ent	no	t ge	ner	ated	ł													
		Generated	1					Ev	/ent	ge	ner	ated	t														

6.7.1.3 INTEN

Address offset: 0x300

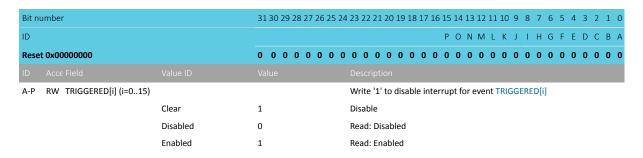

Enable or disable interrupt

Bit number	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		PONMLKJIHGFEDCBA
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		Description
A-P RW TRIGGERED[i] (i=015)		Enable or disable interrupt for event TRIGGERED[i]
Disabled	0	Disable
Enabled	1	Enable

6.7.1.4 INTENSET

Address offset: 0x304

Enable interrupt



6.7.1.5 INTENCLR

Address offset: 0x308

Disable interrupt

6.7.2 Electrical specification

6.7.2.1 EGU Electrical Specification

Symbol	Description	Min.	Тур.	Max.	Units
t _{EGU,EVT}	Latency between setting an EGU event flag and the system		1		cycles
	setting an interrupt				

6.8 GPIO — General purpose input/output

The general purpose input/output pins (GPIOs) are grouped as one or more ports, with each port having up to 32 GPIOs.

The number of ports and GPIOs per port might vary with product variant and package. Refer to Registers on page 133 and Pin assignments on page 418 for more information about the number of GPIOs that are supported.

GPIO has the following user-configurable features:

- Up to 32 GPIO pins per GPIO port
- Configurable output drive strength
- Internal pull-up and pull-down resistors
- Wake-up from high or low level triggers on all pins
- Trigger interrupt on state changes on any pin
- All pins can be used by the PPI task/event system
- One or more GPIO outputs can be controlled through the PPI and GPIOTE channels
- Any pin can be mapped to a peripheral for layout flexibility
- GPIO state changes captured on the SENSE signal can be stored by the LATCH register

The GPIO port peripheral implements up to 32 pins, PIN0 through PIN31. Each of these pins can be individually configured in the PIN_CNF[n] registers (n=0..31).

The following parameters can be configured through these registers:

- Direction
- Drive strength
- Enabling of pull-up and pull-down resistors
- Pin sensing
- Input buffer disconnect

· Analog input (for selected pins)

The PIN_CNF registers are retained registers. See POWER — Power supply on page 52 chapter for more information about retained registers.

6.8.1 Pin configuration

Pins can be individually configured through the SENSE field in the PIN_CNF[n] register to detect either a high or low level input.

When the correct level is detected on a configured pin, the sense mechanism will set the DETECT signal high. Each pin has a separate DETECT signal. Default behavior, defined by the DETECTMODE register, combines all DETECT signals from the pins in the GPIO port into one common DETECT signal and routes it through the system to be utilized by other peripherals. This mechanism is functional in both System ON and System OFF mode. See GPIO port and the GPIO pin details on page 131.

The following figure illustrates the GPIO port containing 32 individual pins, where PINO is shown in more detail for reference. All signals on the left side of the illustration are used by other peripherals in the system and therefore not directly available to the CPU.

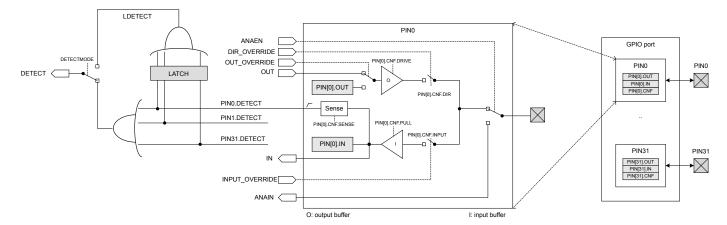


Figure 42: GPIO port and the GPIO pin details

Pins should be in a level that cannot trigger the sense mechanism before being enabled. If the SENSE condition configured in the PIN_CNF registers is met when the sense mechanism is enabled, the DETECT signal will immediately go high. A PORT event is triggered if the DETECT signal was low before enabling the sense mechanism. See GPIOTE — GPIO tasks and events on page 138.

See the following peripherals for more information about how the DETECT signal is used:

- POWER Power supply on page 52 uses the DETECT signal to exit from System OFF mode.
- GPIOTE GPIO tasks and events on page 138 uses the DETECT signal to generate the PORT event.

When a pin's PINx.DETECT signal goes high, a flag is set in the LATCH register. For example, when the PINO.DETECT signal goes high, bit 0 in the LATCH register is set to '1'. If the CPU performs a clear operation on a bit in the LATCH register when the associated PINx.DETECT signal is high, the bit in the LATCH register will not be cleared. The LATCH register will only be cleared if the CPU explicitly clears it by writing a '1' to the bit that shall be cleared, i.e. the LATCH register will not be affected by a PINx.DETECT signal being set low.

The LDETECT signal will be set high when one or more bits in the LATCH register are '1'. The LDETECT signal will be set low when all bits in the LATCH register are successfully cleared to '0'.

If one or more bits in the LATCH register are '1' after the CPU has performed a clear operation on the LATCH register, a rising edge will be generated on the LDETECT signal. This is illustrated in DETECT signal behavior on page 132.

Note: The CPU can read the LATCH register at any time to check if a SENSE condition has been met on one or more of the the GPIO pins, even if that condition is no longer met at the time the CPU queries the LATCH register. This mechanism will work even if the LDETECT signal is not used as the DETECT signal.

The LDETECT signal is by default not connected to the GPIO port's DETECT signal, but via the DETECTMODE register. It is possible to change from default behavior to the DETECT signal that is derived directly from the LDETECT signal. See GPIO port and the GPIO pin details on page 131. The following figure illustrates the DETECT signal behavior for these two alternatives.

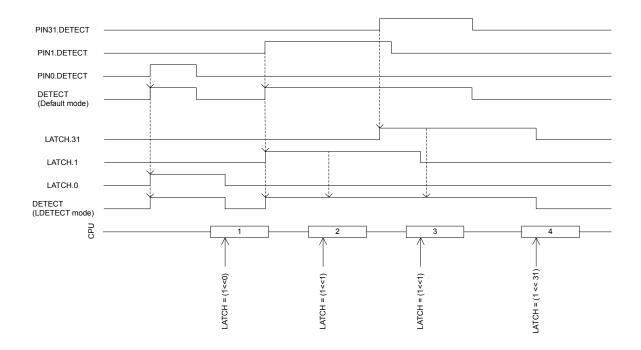


Figure 43: DETECT signal behavior

The input buffer of a GPIO pin can be disconnected from the pin to enable power savings when the pin is not used as an input, see GPIO port and the GPIO pin details on page 131. Input buffers must be connected to get a valid input value in the IN register, and for the sense mechanism to get access to the pin.

Other peripherals in the system can connect to GPIO pins and override their output value and configuration, or read their analog or digital input value. See GPIO port and the GPIO pin details on page 131.

Selected pins also support analog input signals, see ANAIN in GPIO port and the GPIO pin details on page 131. The assignment of the analog pins can be found in Pin assignments on page 418.

Note: When a pin is configured as digital input, increased current consumption occurs when the input voltage is between V_{IL} and V_{IH} . It is good practice to ensure that the external circuitry does not drive that pin to levels between V_{IL} and V_{IH} for a long period of time.

6.8.2 Registers

Base address	Peripheral	Instance	Description	Configuration	
0x50000000	GPIO	GPIO	General purpose input and output		Deprecated
0x50000000	GPIO	P0	General purpose input and output, port	P0.00 - P0.08, P0.14 - P0.18, P0.20, and	
			0.	P0.28 - P0.30 implemented	

Table 39: Instances

Register	Offset	Description
OUT	0x504	Write GPIO port
OUTSET	0x508	Set individual bits in GPIO port
OUTCLR	0x50C	Clear individual bits in GPIO port
IN	0x510	Read GPIO port
DIR	0x514	Direction of GPIO pins
DIRSET	0x518	DIR set register
DIRCLR	0x51C	DIR clear register
LATCH	0x520	Latch register indicating what GPIO pins that have met the criteria set in the PIN_CNF[n].SENSE
		registers
DETECTMODE	0x524	Select between default DETECT signal behaviour and LDETECT mode
PIN_CNF[0]	0x700	Configuration of GPIO pins
PIN_CNF[1]	0x704	Configuration of GPIO pins
PIN_CNF[2]	0x708	Configuration of GPIO pins
PIN_CNF[3]	0x70C	Configuration of GPIO pins
PIN_CNF[4]	0x710	Configuration of GPIO pins
PIN_CNF[5]	0x714	Configuration of GPIO pins
PIN_CNF[6]	0x718	Configuration of GPIO pins
PIN_CNF[7]	0x71C	Configuration of GPIO pins
PIN_CNF[8]	0x720	Configuration of GPIO pins
PIN_CNF[9]	0x724	Configuration of GPIO pins
PIN_CNF[10]	0x728	Configuration of GPIO pins
PIN_CNF[11]	0x72C	Configuration of GPIO pins
PIN_CNF[12]	0x730	Configuration of GPIO pins
PIN_CNF[13]	0x734	Configuration of GPIO pins
PIN_CNF[14]	0x738	Configuration of GPIO pins
PIN_CNF[15]	0x73C	Configuration of GPIO pins
PIN_CNF[16]	0x740	Configuration of GPIO pins
PIN_CNF[17]	0x744	Configuration of GPIO pins
PIN_CNF[18]	0x748	Configuration of GPIO pins
PIN_CNF[19]	0x74C	Configuration of GPIO pins
PIN_CNF[20]	0x750	Configuration of GPIO pins
PIN_CNF[21]	0x754	Configuration of GPIO pins
PIN_CNF[22]	0x758	Configuration of GPIO pins
PIN_CNF[23]	0x75C	Configuration of GPIO pins
PIN_CNF[24]	0x760	Configuration of GPIO pins
PIN_CNF[25]	0x764	Configuration of GPIO pins
PIN_CNF[26]	0x768	Configuration of GPIO pins
PIN_CNF[27]	0x76C	Configuration of GPIO pins
PIN_CNF[28]	0x770	Configuration of GPIO pins
PIN_CNF[29]	0x774	Configuration of GPIO pins
PIN_CNF[30]	0x778	Configuration of GPIO pins

Register	Offset	Description
PIN_CNF[31]	0x77C	Configuration of GPIO pins

Table 40: Register overview

6.8.2.1 OUT

Address offset: 0x504

Write GPIO port

Bit no	umber		31	30	29	28	27	26	25	24	23	22	21	20	19 :	L8 1	.7 1	6 1!	5 14	13	12	11 :	10 9	9 8	3 7	6	5	4	3	2	1 0
ID			f	е	d	С	b	а	Z	Υ	Χ	W	٧	U	Т	S	R C) P	0	N	М	L	Κ.	JI	Н	l G	F	Ε	D	С	ВА
Rese	t 0x00000000		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0 (0 0	0	0	0	0	0	0	0 0
ID																															
A-f	RW PIN[i] (i=031)										Pin	i																			
		Low	0								Pin	dr	ive	ris	low																
		High	1								Pin	dr	ive	ris	higl	า															

6.8.2.2 OUTSET

Address offset: 0x508

Set individual bits in GPIO port

Read: reads value of OUT register.

Bit n	umber		31	. 30 2	29 :	28	27	26	25	24	23 2	22 2	21 20	19	18	17	16	15	14	13 :	2 1	1 10	9	8	7	6	5	4	3	2 :	1 0
ID			f	е	d	С	b	а	Z	Υ	X '	W	V U	Т	S	R	Q	Р	0	N I	M I	_ K	J	1	Н	G	F	Ε	D	C 1	3 A
Rese	t 0x00000000		0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0	0	0 (0 0
ID											Des																				
A-f	RW PIN[i] (i=031)										Pin	i																			
		Low	0								Rea	ıd: ı	oin c	lrive	er is	lov	٧														
		High	1								Rea	ıd: ı	oin c	lrive	er is	hig	gh														
		Set	1								Wri	te:	writ	ing	a '1	' se	ts t	he	pin	hig	h; v	/ritii	ng a	'0'	ha	s no)				
											effe	ect																			

6.8.2.3 OUTCLR

Address offset: 0x50C

Clear individual bits in GPIO port

Read: reads value of OUT register.

Bit n	umber		31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			fedcba Z	Y X W V U T S R Q P O N M L K J I H G F E D C B A
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
A-f	RW PIN[i] (i=031)			Pin i
		Low	0	Read: pin driver is low
		High	1	Read: pin driver is high
		Clear	1	Write: writing a '1' sets the pin low; writing a '0' has no
				effect

6.8.2.4 IN

Address offset: 0x510

Read GPIO port

Bit number	31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID	fedcbaZY	Y X W V U T S R Q P O N M L K J I H G F E D C B A
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		
A-f R PIN[i] (i=031)		Pin i
Low	0	Pin input is low
High	1	Pin input is high

6.8.2.5 DIR

Address offset: 0x514 Direction of GPIO pins

Bit number		31 30 29 28	8 27 26	25 2	4 23 :	22 21	. 20 19	9 18	17 1	6 15	14	13 12	11 1	.0 9	8	7	6	5	4	3 2	1	0
ID		f e d c	c b a	Z Y	′ X	W V	U T	S	R (Q P	0	N M	L	< J	-1	Н	G	F	Ε	D C	В	Α
Reset 0x00000000		0 0 0 0	0 0	0 0	0	0 0	0 0	0	0 (0 0	0	0 0	0	0	0	0	0	0	0	0 0	0	0
ID Acce Field																						
A-f RW PIN[i] (i=031)					Pin	i																
	Input	0			Pin	set a	s inpu	ut														
	Output	1			Pin	set a	s out	put														

6.8.2.6 DIRSET

Address offset: 0x518

DIR set register

Read: reads value of DIR register.

Bit n	umber		31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
ID			fedcbaZYXWVUTSRQPONMLKJIHGFEDCB
Rese	et 0x00000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID			
A-f	RW PIN[i] (i=031)		Set as output pin i
		Input	0 Read: pin set as input
		Output	1 Read: pin set as output
		Set	1 Write: writing a '1' sets pin to output; writing a '0' has no
			effect

6.8.2.7 DIRCLR

Address offset: 0x51C DIR clear register

Read: reads value of DIR register.

Bit n	umber		31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			fedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Rese	et 0x00000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID			
A-f	RW PIN[i] (i=031)		Set as input pin i
		Input	0 Read: pin set as input
		Output	1 Read: pin set as output
		Clear	1 Write: writing a '1' sets pin to input; writing a '0' has no
			effect

6.8.2.8 LATCH

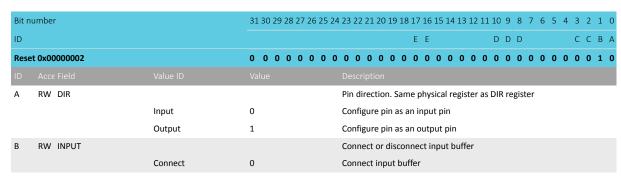
Address offset: 0x520

Latch register indicating what GPIO pins that have met the criteria set in the PIN_CNF[n].SENSE registers

Bit no	umber		313	30 2	29 2	28 2	27 2	26 2	25	24	23	22	21	20	19	18 :	17 :	16	15	14	13	12	11 :	10	9	8	7	6	5 4	1 3	2	1	0
ID			f	e	d	С	b i	a	Z	Υ	Х	W	٧	U	Т	S	R	Q	Р	0	N	M	L	K	J	ı	Н	G	F E	D	С	В	Α
Rese	t 0x00000000		0	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0
ID																																	
A-f	RW PIN[i] (i=031)										Sta	atus	s or	wl	netl	her	PIN	li h	as	me	et cı	ite	ria	set	in								
											PIN	N_C	NF	i.SE	NSI	E re	gis	ter.	W	rite	e '1'	to	cle	ar.									
		NotLatched	0								Cri	iter	ia h	as	not	be	en	me	t														
		Latched	1								Cri	iter	ia h	ıas	bee	n n	net																

6.8.2.9 DETECTMODE

Address offset: 0x524


Select between default DETECT signal behaviour and LDETECT mode

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW DETECTMODE			Select between default DETECT signal behaviour and
				LDETECT mode
		Default	0	DETECT directly connected to PIN DETECT signals
		LDETECT	1	Use the latched LDETECT behaviour

6.8.2.10 PIN_CNF[n] (n=0..31)

Address offset: $0x700 + (n \times 0x4)$

Configuration of GPIO pins

Bit r	number		31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				E E D D D C C B A
Rese	et 0x00000002		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		Disconnect	1	Disconnect input buffer
С	RW PULL			Pull configuration
		Disabled	0	No pull
		Pulldown	1	Pull down on pin
		Pullup	3	Pull up on pin
D	RW DRIVE			Drive configuration
		S0S1	0	Standard '0', standard '1'
		H0S1	1	High drive '0', standard '1'
		S0H1	2	Standard '0', high drive '1'
		H0H1	3	High drive '0', high 'drive '1"
		DOS1	4	Disconnect '0' standard '1' (normally used for wired-or
				connections)
		D0H1	5	Disconnect '0', high drive '1' (normally used for wired-or
				connections)
		SOD1	6	Standard '0'. disconnect '1' (normally used for wired-and
				connections)
		H0D1	7	High drive '0', disconnect '1' (normally used for wired-and
				connections)
Е	RW SENSE			Pin sensing mechanism
		Disabled	0	Disabled
		High	2	Sense for high level
		Low	3	Sense for low level

6.8.3 Electrical specification

6.8.3.1 GPIO Electrical Specification

Symbol	Description	Min.	Тур.	Max.	Units
V_{IH}	Input high voltage	0.7 x		VDD	V
		VDD			
V_{IL}	Input low voltage	VSS		0.3 x	V
				VDD	
$V_{\text{OH,SD}}$	Output high voltage, standard drive, 0.5 mA, VDD \geq 1.7	VDD	- 0.4	VDD	V
V _{OH,HDH}	Output high voltage, high drive, 5 mA, VDD \geq 2.7 V	VDD	- 0.4	VDD	V
$V_{\mathrm{OH,HDL}}$	Output high voltage, high drive, 3 mA, VDD \geq 1.7 V	VDD	- 0.4	VDD	V
$V_{OL,SD}$	Output low voltage, standard drive, 0.5 mA, VDD ≥ 1.7	VSS		VSS + 0	.4 V
$V_{OL,HDH}$	Output low voltage, high drive, 5 mA, VDD ≥ 2.7 V	VSS		VSS + 0	.4 V
$V_{OL,HDL}$	Output low voltage, high drive, 3 mA, VDD ≥ 1.7 V	VSS		VSS + 0	.4 V
$I_{OL,SD}$	Current at VSS+0.4 V, output set low, standard drive, VDD ≥	1	2	4	mA
	1.7				
I _{OL,HDH}	Current at VSS+0.4 V, output set low, high drive, VDD \geq 2.7 V	6	10	15	mA
$I_{OL,HDL}$	Current at VSS+0.4 V, output set low, high drive, VDD \geq 1.7 V	3			mA
I _{OH,SD}	Current at VDD-0.4 V, output set high, standard drive, VDD	1	2	4	mA
	≥ 1.7				
I _{OH,HDH}	Current at VDD-0.4 V, output set high, high drive, VDD ≥ 2.7	6	9	14	mA
	V				
I _{OH,HDL}	Current at VDD-0.4 V, output set high, high drive, VDD \geq 1.7	3			mA
	V				

137

Symbol	Description	Min.	Тур.	Max.	Units
t _{RF,15pF}	Rise/fall time, standard drive mode, 10-90%, 15 pF load ¹³		9		ns
t _{RF,25pF}	Rise/fall time, standard drive mode, 10-90%, 25 pF load ¹³		13		ns
t _{RF,50pF}	Rise/fall time, standard drive mode, 10-90%, 50 pF load ¹³		25		ns
t _{HRF,15pF}	Rise/Fall time, high drive mode, 10-90%, 15 pF load ¹³		4		ns
t _{HRF,25pF}	Rise/Fall time, high drive mode, 10-90%, 25 pF load ¹³		5		ns
t _{HRF,50pF}	Rise/Fall time, high drive mode, 10-90%, 50 pF load ¹³		8		ns
R _{PU}	Pull-up resistance	11	13	16	kΩ
R_{PD}	Pull-down resistance	11	13	16	kΩ
C _{PAD}	Pad capacitance		3		pF

6.9 GPIOTE — GPIO tasks and events

The GPIO tasks and events (GPIOTE) module provides functionality for accessing GPIO pins using tasks and events. Each GPIOTE channel can be assigned to one pin.

A GPIOTE block enables GPIOs to generate events on pin state change which can be used to carry out tasks through the PPI system. A GPIO can also be driven to change state on system events using the PPI system. Tasks and events are briefly introduced in Peripheral interface on page 88, and GPIO is described in more detail in GPIO — General purpose input/output on page 130.

Low power detection of pin state changes is possible when in System ON or System OFF.

Instance	Number of GPIOTE channels
GPIOTE	8

Table 41: GPIOTE properties

Up to three tasks can be used in each GPIOTE channel for performing write operations to a pin. Two tasks are fixed (SET and CLR), and one (OUT) is configurable to perform following operations:

- Set
- Clear
- Toggle

An event can be generated in each GPIOTE channel from one of the following input conditions:

- Rising edge
- · Falling edge
- Any change

6.9.1 Pin events and tasks

The GPIOTE module has a number of tasks and events that can be configured to operate on individual GPIO pins.

The tasks SET[n], CLR[n], and OUT[n] can write to individual pins, and events IN[n] can be generated from input changes of individual pins.

The SET task will set the pin selected in GPIOTE.CONFIG[n].PSEL to high. The CLR task will set the pin low.

The effect of the OUT task on the pin is configurable in CONFIG[n].POLARITY. It can set the pin high, set it low, or toggle it.

NORDIC*

¹³ Rise and fall times based on simulations

Tasks and events are configured using the CONFIG[n] registers. One CONFIG[n] register is associated with a set of SET[n], CLR[n], and OUT[n] tasks and IN[n] events.

As long as a SET[n], CLR[n], and OUT[n] task or an IN[n] event is configured to control pin **n**, the pin's output value will only be updated by the GPIOTE module. The pin's output value, as specified in the GPIO, will therefore be ignored as long as the pin is controlled by GPIOTE. Attempting to write to the pin as a normal GPIO pin will have no effect. When the GPIOTE is disconnected from a pin, the associated pin gets the output and configuration values specified in the GPIO module, see MODE field in CONFIG[n] register.

When conflicting tasks are triggered simultaneously (i.e. during the same clock cycle) in one channel, the priority of the tasks is as described in the following table.

Priority	Task
1	ОИТ
2	CLR
3	SET

Table 42: Task priorities

When setting the CONFIG[n] registers, MODE=Disabled does not have the same effect as MODE=Task and POLARITY=None. In the latter case, a CLR or SET task occurring at the exact same time as OUT will end up with no change on the pin, based on the priorities described in the table above.

When a GPIOTE channel is configured to operate on a pin as a task, the initial value of that pin is configured in the OUTINIT field of CONFIG[n].

6.9.2 Port event

PORT is an event that can be generated from multiple input pins using the GPIO DETECT signal.

The event will be generated on the rising edge of the DETECT signal. See GPIO — General purpose input/output on page 130 for more information about the DETECT signal.

The GPIO DETECT signal will not wake the system up again if the system is put into System ON IDLE while the DETECT signal is high. Make sure to clear all DETECT sources before entering sleep. If the LATCH register is used as a source, a new rising edge will be generated on DETECT if any bit in LATCH is still high after clearing all or part of the register. This could occur if one of the PINx.DETECT signals is still high, for example. See Pin configuration on page 131 for more information.

Setting the system to System OFF while DETECT is high will cause a wakeup from System OFF reset.

This feature is always enabled even if the peripheral itself appears to be IDLE, meaning no clocks or other power intensive infrastructure have to be requested to keep this feature enabled. This feature can therefore be used to wake up the CPU from a WFI or WFE type sleep in System ON when all peripherals and the CPU are idle, meaning the lowest power consumption in System ON mode.

In order to prevent spurious interrupts from the PORT event while configuring the sources, the following must be performed:

- **1.** Disable interrupts on the PORT event (through INTENCLR.PORT).
- 2. Configure the sources (PIN CNF[n].SENSE).
- 3. Clear any potential event that could have occurred during configuration (write '0' to EVENTS PORT).
- 4. Enable interrupts (through INTENSET.PORT).

6.9.3 Tasks and events pin configuration

Each GPIOTE channel is associated with one physical GPIO pin through the CONFIG.PSEL field.

When Event mode is selected in CONFIG.MODE, the pin specified by CONFIG.PSEL will be configured as an input, overriding the DIR setting in GPIO. Similarly, when Task mode is selected in CONFIG.MODE,

the pin specified by CONFIG.PSEL will be configured as an output overriding the DIR setting and OUT value in GPIO. When Disabled is selected in CONFIG.MODE, the pin specified by CONFIG.PSEL will use its configuration from the PIN[n].CNF registers in GPIO.

Note: A pin can only be assigned to one GPIOTE channel at a time. Failing to do so may result in unpredictable behavior.

6.9.4 Registers

Base address	Peripheral	Instance	Description	Configuration
0x40006000	GPIOTE	GPIOTE	GPIO tasks and events	

Table 43: Instances

Register	Offset	Description
TASKS_OUT[0]	0x000	Task for writing to pin specified in CONFIG[0].PSEL. Action on pin is configured in
		CONFIG[0].POLARITY.
TASKS_OUT[1]	0x004	Task for writing to pin specified in CONFIG[1].PSEL. Action on pin is configured in
		CONFIG[1].POLARITY.
TASKS_OUT[2]	0x008	Task for writing to pin specified in CONFIG[2].PSEL. Action on pin is configured in
		CONFIG[2].POLARITY.
TASKS_OUT[3]	0x00C	Task for writing to pin specified in CONFIG[3].PSEL. Action on pin is configured in
		CONFIG[3].POLARITY.
TASKS_OUT[4]	0x010	Task for writing to pin specified in CONFIG[4].PSEL. Action on pin is configured in
		CONFIG[4].POLARITY.
TASKS_OUT[5]	0x014	Task for writing to pin specified in CONFIG[5].PSEL. Action on pin is configured in
		CONFIG[5].POLARITY.
TASKS_OUT[6]	0x018	Task for writing to pin specified in CONFIG[6].PSEL. Action on pin is configured in
		CONFIG[6].POLARITY.
TASKS_OUT[7]	0x01C	Task for writing to pin specified in CONFIG[7].PSEL. Action on pin is configured in
		CONFIG[7].POLARITY.
TASKS_SET[0]	0x030	Task for writing to pin specified in CONFIG[0].PSEL. Action on pin is to set it high.
TASKS_SET[1]	0x034	Task for writing to pin specified in CONFIG[1].PSEL. Action on pin is to set it high.
TASKS_SET[2]	0x038	Task for writing to pin specified in CONFIG[2].PSEL. Action on pin is to set it high.
TASKS_SET[3]	0x03C	Task for writing to pin specified in CONFIG[3].PSEL. Action on pin is to set it high.
TASKS_SET[4]	0x040	Task for writing to pin specified in CONFIG[4].PSEL. Action on pin is to set it high.
TASKS_SET[5]	0x044	Task for writing to pin specified in CONFIG[5].PSEL. Action on pin is to set it high.
TASKS_SET[6]	0x048	Task for writing to pin specified in CONFIG[6].PSEL. Action on pin is to set it high.
TASKS_SET[7]	0x04C	Task for writing to pin specified in CONFIG[7].PSEL. Action on pin is to set it high.
TASKS_CLR[0]	0x060	Task for writing to pin specified in CONFIG[0].PSEL. Action on pin is to set it low.
TASKS_CLR[1]	0x064	Task for writing to pin specified in CONFIG[1].PSEL. Action on pin is to set it low.
TASKS_CLR[2]	0x068	Task for writing to pin specified in CONFIG[2].PSEL. Action on pin is to set it low.
TASKS_CLR[3]	0x06C	Task for writing to pin specified in CONFIG[3].PSEL. Action on pin is to set it low.
TASKS_CLR[4]	0x070	Task for writing to pin specified in CONFIG[4].PSEL. Action on pin is to set it low.
TASKS_CLR[5]	0x074	Task for writing to pin specified in CONFIG[5].PSEL. Action on pin is to set it low.
TASKS_CLR[6]	0x078	Task for writing to pin specified in CONFIG[6].PSEL. Action on pin is to set it low.
TASKS_CLR[7]	0x07C	Task for writing to pin specified in CONFIG[7].PSEL. Action on pin is to set it low.
EVENTS_IN[0]	0x100	Event generated from pin specified in CONFIG[0].PSEL
EVENTS_IN[1]	0x104	Event generated from pin specified in CONFIG[1].PSEL
EVENTS_IN[2]	0x108	Event generated from pin specified in CONFIG[2].PSEL
EVENTS_IN[3]	0x10C	Event generated from pin specified in CONFIG[3].PSEL
EVENTS_IN[4]	0x110	Event generated from pin specified in CONFIG[4].PSEL
EVENTS_IN[5]	0x114	Event generated from pin specified in CONFIG[5].PSEL

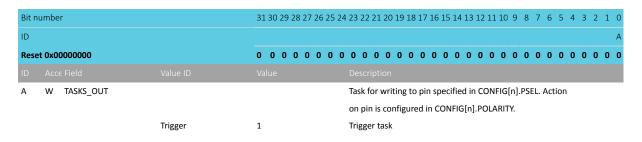
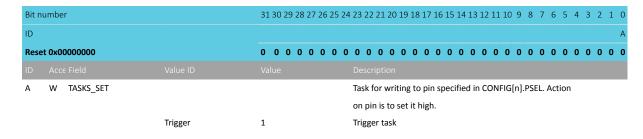

Register	Offset	Description
EVENTS_IN[6]	0x118	Event generated from pin specified in CONFIG[6].PSEL
EVENTS_IN[7]	0x11C	Event generated from pin specified in CONFIG[7].PSEL
EVENTS_PORT	0x17C	Event generated from multiple input GPIO pins with SENSE mechanism enabled
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt
CONFIG[0]	0x510	Configuration for OUT[n], SET[n], and CLR[n] tasks and IN[n] event
CONFIG[1]	0x514	Configuration for OUT[n], SET[n], and CLR[n] tasks and IN[n] event
CONFIG[2]	0x518	Configuration for OUT[n], SET[n], and CLR[n] tasks and IN[n] event
CONFIG[3]	0x51C	Configuration for OUT[n], SET[n], and CLR[n] tasks and IN[n] event
CONFIG[4]	0x520	Configuration for OUT[n], SET[n], and CLR[n] tasks and IN[n] event
CONFIG[5]	0x524	Configuration for OUT[n], SET[n], and CLR[n] tasks and IN[n] event
CONFIG[6]	0x528	Configuration for OUT[n], SET[n], and CLR[n] tasks and IN[n] event
CONFIG[7]	0x52C	Configuration for OUT[n], SET[n], and CLR[n] tasks and IN[n] event

Table 44: Register overview

6.9.4.1 TASKS_OUT[n] (n=0..7)

Address offset: $0x000 + (n \times 0x4)$


Task for writing to pin specified in CONFIG[n].PSEL. Action on pin is configured in CONFIG[n].POLARITY.

6.9.4.2 TASKS_SET[n] (n=0..7)

Address offset: $0x030 + (n \times 0x4)$

Task for writing to pin specified in CONFIG[n].PSEL. Action on pin is to set it high.

6.9.4.3 TASKS_CLR[n] (n=0..7)

Address offset: $0x060 + (n \times 0x4)$

Task for writing to pin specified in CONFIG[n].PSEL. Action on pin is to set it low.

Bit number		31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			А
Reset 0x00000000		0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A W TASKS_CLR			Task for writing to pin specified in CONFIG[n].PSEL. Action
			on pin is to set it low.
	Trigger	1	Trigger task

6.9.4.4 EVENTS_IN[n] (n=0..7)

Address offset: $0x100 + (n \times 0x4)$

Event generated from pin specified in CONFIG[n].PSEL

Bit n	umber		31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	1 0
ID				Α
Rese	et 0x00000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 (
ID				
Α	RW EVENTS_IN		Event generated from pin specified in CONFIG[n].PSEL	
		NotGenerated	0 Event not generated	
		Generated	1 Event generated	

6.9.4.5 EVENTS_PORT

Address offset: 0x17C

Event generated from multiple input GPIO pins with SENSE mechanism enabled


Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	t 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW EVENTS_PORT			Event generated from multiple input GPIO pins with SENSE
				mechanism enabled
		NotGenerated	0	Event not generated

6.9.4.6 INTENSET

Address offset: 0x304

Enable interrupt

Bit number		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		1	HGFEDCBA
Reset 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A-H RW IN[i] (i=07)			Write '1' to enable interrupt for event IN[i]
	Set	1	Enable
	Disabled	0	Read: Disabled
	Enabled	1	Read: Enabled
I RW PORT			Write '1' to enable interrupt for event PORT
	Set	1	Enable
	Disabled	0	Read: Disabled
	Enabled	1	Read: Enabled

6.9.4.7 INTENCLR

Address offset: 0x308

Disable interrupt

6.9.4.8 CONFIG[n] (n=0..7)

Address offset: $0x510 + (n \times 0x4)$

Configuration for OUT[n], SET[n], and CLR[n] tasks and IN[n] event

Bit r	number		31 30 29 28 27 26 2	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				E DD BBBBB AA
Res	et 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW MODE			Mode
		Disabled	0	Disabled. Pin specified by PSEL will not be acquired by the
				GPIOTE module.
		Event	1	Event mode
				The pin specified by PSEL will be configured as an input and
				the IN[n] event will be generated if operation specified in
				POLARITY occurs on the pin.
		Task	3	Task mode
				The GPIO specified by PSEL will be configured as an output
				and triggering the SET[n], CLR[n] or OUT[n] task will
				perform the operation specified by POLARITY on the pin.
				When enabled as a task the GPIOTE module will acquire the
				pin and the pin can no longer be written as a regular output
				pin from the GPIO module.
В	RW PSEL		[031]	GPIO number associated with SET[n], CLR[n], and OUT[n]
				tasks and IN[n] event
D	RW POLARITY			When In task mode: Operation to be performed on output
				when OUT[n] task is triggered. When In event mode:
				Operation on input that shall trigger IN[n] event.
		None	0	Task mode: No effect on pin from OUT[n] task. Event mode:
				no IN[n] event generated on pin activity.
		LoToHi	1	Task mode: Set pin from OUT[n] task. Event mode: Generate
				IN[n] event when rising edge on pin.
		HiToLo	2	Task mode: Clear pin from OUT[n] task. Event mode:
				Generate IN[n] event when falling edge on pin.

Bit number		31 30 29 28 27 26 2	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			E DD BBBBB AA
Reset 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Toggle	3	Task mode: Toggle pin from OUT[n]. Event mode: Generate
			IN[n] when any change on pin.
E RW OUTINIT			When in task mode: Initial value of the output when the
			GPIOTE channel is configured. When in event mode: No
			effect.
	Low	0	Task mode: Initial value of pin before task triggering is low
	High	1	Task mode: Initial value of pin before task triggering is high

6.9.5 Electrical specification

6.10 PPI — Programmable peripheral interconnect

The programmable peripheral interconnect (PPI) enables peripherals to interact autonomously with each other using tasks and events independent of the CPU. The PPI allows precise synchronization between peripherals when real-time application constraints exist and eliminates the need for CPU activity to implement behavior which can be predefined using PPI.

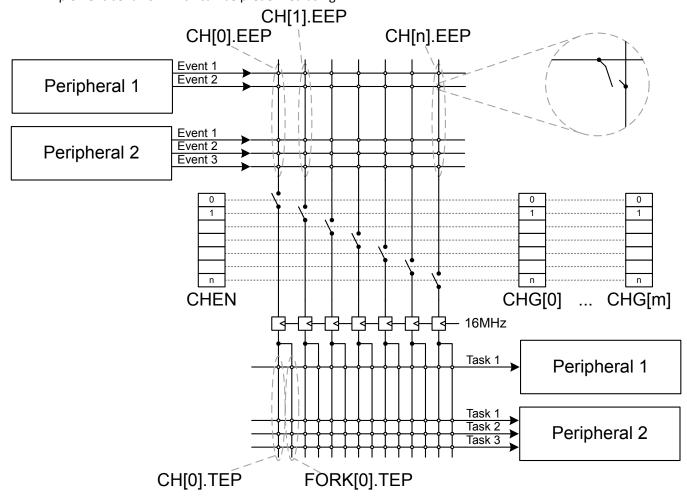


Figure 44: PPI block diagram

The PPI system has, in addition to the fully programmable peripheral interconnections, a set of channels where the event end point (EEP) and task end points (TEP) are fixed in hardware. These fixed channels can

be individually enabled, disabled, or added to PPI channel groups (see CHG[n] registers), in the same way as ordinary PPI channels.

Instance	Channel	Number of channels
PPI	0-19	20
PPI (fixed)	20-31	12

Table 45: Configurable and fixed PPI channels

The PPI provides a mechanism to automatically trigger a task in one peripheral as a result of an event occurring in another peripheral. A task is connected to an event through a PPI channel. The PPI channel is composed of three end point registers, one EEP and two TEPs. A peripheral task is connected to a TEP using the address of the task register associated with the task. Similarly, a peripheral event is connected to an EEP using the address of the event register associated with the event.

On each PPI channel, the signals are synchronized to the 16 MHz clock, to avoid any internal violation of setup and hold timings. As a consequence, events that are synchronous to the 16 MHz clock will be delayed by one clock period, while other asynchronous events will be delayed by up to one 16 MHz clock period.

Note that shortcuts (as defined in the SHORTS register in each peripheral) are not affected by this 16 MHz synchronization, and are therefore not delayed.

Each TEP implements a fork mechanism that enables a second task to be triggered at the same time as the task specified in the TEP is triggered. This second task is configured in the task end point register in the FORK registers groups, e.g. FORK.TEP[0] is associated with PPI channel CH[0].

There are two ways of enabling and disabling PPI channels:

- Enable or disable PPI channels individually using the CHEN, CHENSET, and CHENCLR registers.
- Enable or disable PPI channels in PPI channel groups through the groups' ENABLE and DISABLE tasks. Prior to these tasks being triggered, the PPI channel group must be configured to define which PPI channels belong to which groups.

Note that when a channel belongs to two groups m and n, and the tasks CHG[m].EN and CHG[n].DIS occur simultaneously (m and n can be equal or different), the CHG[m].EN on that channel has priority.

PPI tasks (for example, CHG[0].EN) can be triggered through the PPI like any other task, which means they can be hooked to a PPI channel as a TEP. One event can trigger multiple tasks by using multiple channels and one task can be triggered by multiple events in the same way.

6.10.1 Pre-programmed channels

Some of the PPI channels are pre-programmed. These channels cannot be configured by the CPU, but can be added to groups and enabled and disabled like the general purpose PPI channels. The FORK TEP for these channels are still programmable and can be used by the application.

For a list of pre-programmed PPI channels, see the table below.

Channel	EEP	TEP
20	TIMERO->EVENTS_COMPARE[0]	RADIO->TASKS_TXEN
21	TIMERO->EVENTS_COMPARE[0]	RADIO->TASKS_RXEN
22	TIMERO->EVENTS_COMPARE[1]	RADIO->TASKS_DISABLE
23	RADIO->EVENTS_BCMATCH	AAR->TASKS_START
24	RADIO->EVENTS_READY	CCM->TASKS_KSGEN
25	RADIO->EVENTS_ADDRESS	CCM->TASKS_CRYPT
26	RADIO->EVENTS_ADDRESS	TIMERO->TASKS_CAPTURE[1]
27	RADIO->EVENTS_END	TIMERO->TASKS_CAPTURE[2]
28	RTC0->EVENTS_COMPARE[0]	RADIO->TASKS_TXEN
29	RTC0->EVENTS_COMPARE[0]	RADIO->TASKS_RXEN
30	RTC0->EVENTS_COMPARE[0]	TIMERO->TASKS_CLEAR
31	RTC0->EVENTS_COMPARE[0]	TIMERO->TASKS_START

Table 46: Pre-programmed channels

6.10.2 Registers

Base address	Peripheral	Instance	Description	Configuration
0x4001F000	PPI	PPI	Programmable peripheral interconnect	

Table 47: Instances

Register	Offset	Description
TASKS_CHG[0].EN	0x000	Enable channel group 0
TASKS_CHG[0].DIS	0x004	Disable channel group 0
TASKS_CHG[1].EN	0x008	Enable channel group 1
TASKS_CHG[1].DIS	0x00C	Disable channel group 1
TASKS_CHG[2].EN	0x010	Enable channel group 2
TASKS_CHG[2].DIS	0x014	Disable channel group 2
TASKS_CHG[3].EN	0x018	Enable channel group 3
TASKS_CHG[3].DIS	0x01C	Disable channel group 3
TASKS_CHG[4].EN	0x020	Enable channel group 4
TASKS_CHG[4].DIS	0x024	Disable channel group 4
TASKS_CHG[5].EN	0x028	Enable channel group 5
TASKS_CHG[5].DIS	0x02C	Disable channel group 5
CHEN	0x500	Channel enable register
CHENSET	0x504	Channel enable set register
CHENCLR	0x508	Channel enable clear register
CH[0].EEP	0x510	Channel 0 event end-point
CH[0].TEP	0x514	Channel 0 task end-point
CH[1].EEP	0x518	Channel 1 event end-point
CH[1].TEP	0x51C	Channel 1 task end-point
CH[2].EEP	0x520	Channel 2 event end-point
CH[2].TEP	0x524	Channel 2 task end-point
CH[3].EEP	0x528	Channel 3 event end-point
CH[3].TEP	0x52C	Channel 3 task end-point
CH[4].EEP	0x530	Channel 4 event end-point
CH[4].TEP	0x534	Channel 4 task end-point
CH[5].EEP	0x538	Channel 5 event end-point
CH[5].TEP	0x53C	Channel 5 task end-point
CH[6].EEP	0x540	Channel 6 event end-point
CH[6].TEP	0x544	Channel 6 task end-point

Register	Offset	Description
CH[7].EEP	0x548	Channel 7 event end-point
CH[7].TEP	0x54C	Channel 7 task end-point
CH[8].EEP	0x550	Channel 8 event end-point
CH[8].TEP	0x554	Channel 8 task end-point
CH[9].EEP	0x558	Channel 9 event end-point
CH[9].TEP	0x55C	Channel 9 task end-point
CH[10].EEP	0x560	Channel 10 event end-point
CH[10].TEP	0x564	Channel 10 task end-point
CH[11].EEP	0x568	Channel 11 event end-point
CH[11].TEP	0x56C	Channel 11 task end-point
CH[12].EEP	0x570	Channel 12 event end-point
CH[12].TEP	0x574	Channel 12 task end-point
CH[13].EEP	0x578	Channel 13 event end-point
CH[13].TEP	0x57C	Channel 13 task end-point
CH[14].EEP	0x580	Channel 14 event end-point
CH[14].TEP	0x584	Channel 14 task end-point
CH[15].EEP	0x588	Channel 15 event end-point
CH[15].TEP	0x58C	Channel 15 task end-point
CH[16].EEP	0x590	Channel 16 event end-point
CH[16].TEP	0x594	Channel 16 task end-point
CH[17].EEP	0x598	Channel 17 event end-point
CH[17].TEP	0x59C	Channel 17 task end-point
CH[18].EEP	0x5A0	Channel 18 event end-point
CH[18].TEP	0x5A4	Channel 18 task end-point
CH[19].EEP	0x5A8	Channel 19 event end-point
CH[19].TEP	0x5AC	Channel 19 task end-point
CHG[0]	0x800	Channel group 0
CHG[1]	0x804	Channel group 1
CHG[2]	0x808	Channel group 2
CHG[3]	0x80C	Channel group 3
CHG[4]	0x810	Channel group 4
CHG[5]	0x814	Channel group 5
FORK[0].TEP	0x910	Channel 0 task end-point
FORK[1].TEP	0x914	Channel 1 task end-point
FORK[2].TEP	0x918	Channel 2 task end-point
FORK[3].TEP	0x91C	Channel 3 task end-point
FORK[4].TEP	0x920	Channel 4 task end-point
FORK[5].TEP	0x924	Channel 5 task end-point
FORK[6].TEP	0x928	Channel 6 task end-point
FORK[7].TEP	0x92C	Channel 7 task end-point
FORK[8].TEP	0x930	Channel 8 task end-point
FORK[9].TEP	0x934	Channel 9 task end-point
FORK[10].TEP	0x938	Channel 10 task end-point
FORK[11].TEP	0x93C	Channel 11 task end-point
FORK[12].TEP	0x940	Channel 12 task end-point
FORK[13].TEP	0x944	Channel 13 task end-point
FORK[14].TEP	0x948	Channel 14 task end-point
FORK[15].TEP	0x94C	Channel 15 task end-point
FORK[16].TEP	0x950	Channel 16 task end-point
FORK[17].TEP	0x954	Channel 17 task end-point
FORK[18].TEP	0x958	Channel 18 task end-point
FORK[19].TEP	0x95C	Channel 19 task end-point
FORK[20].TEP	0x960	Channel 20 task end-point

Register	Offset	Description
FORK[21].TEP	0x964	Channel 21 task end-point
FORK[22].TEP	0x968	Channel 22 task end-point
FORK[23].TEP	0x96C	Channel 23 task end-point
FORK[24].TEP	0x970	Channel 24 task end-point
FORK[25].TEP	0x974	Channel 25 task end-point
FORK[26].TEP	0x978	Channel 26 task end-point
FORK[27].TEP	0x97C	Channel 27 task end-point
FORK[28].TEP	0x980	Channel 28 task end-point
FORK[29].TEP	0x984	Channel 29 task end-point
FORK[30].TEP	0x988	Channel 30 task end-point
FORK[31].TEP	0x98C	Channel 31 task end-point

Table 48: Register overview

6.10.2.1 TASKS_CHG[n].EN (n=0..5)

Address offset: $0x000 + (n \times 0x8)$


Enable channel group n

6.10.2.2 TASKS_CHG[n].DIS (n=0..5)

Address offset: $0x004 + (n \times 0x8)$

Disable channel group n

6.10.2.3 CHEN

Address offset: 0x500 Channel enable register

Bit number		31	30 2	29 2	28 2	27 2	6 2	25 2	4 2	23 2	22 2	21 2	20 1	9 1	8 1	7 1	5 15	5 14	13	12	11	10	9	8	7	6	5	4	3 2	1	0
ID		f	е	d	С	b a	a 2	Z '	Y	X١	W	V	U -	Т :	S R	C	P	0	N	М	L	K	J	L	Н	G	F	Ε	D (В	Α
Reset 0x00000000		0	0	0	0	0 () (0 (0	0	0	0	0 (0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0	0
ID Acce Field																															
A-T RW CH[i] (i=019)									E	Ena	ble	or	disa	able	e ch	an	nel	i													
	Disabled	0							[Disa	able	e ch	anı	nel																	
	Enabled	1							E	Ena	ble	ch.	ann	el																	
U-f RW CH[i] (i=2031)									E	Ena	ble	or	disa	able	e ch	an	nel	i													
	Disabled	0							[Disa	able	e ch	anı	nel																	
	Enabled	1							E	Ena	ble	ch	ann	el																	

6.10.2.4 CHENSET

Address offset: 0x504

Channel enable set register

Read: reads value of CH{i} field in CHEN register.

Bit number		31	30 2	9 2	28 2	27 2	6 2	5 2	24 2	23 2	2 21	1 20	19	18	17 1	16 1	.5 1	4 1	3 12	11	10	9	8	7	6 5	5 4	3	2	1 0
ID		f	e d	t	С	b i	a Z	<u> </u>	Υ :	ΧV	V V	U	Т	S	R	Q	Р (1 C	I M	L	K	J	1 1	+ (3 F	E	D	С	ВА
Reset 0x00000000		0	0 ()	0	0 (0 0) (0	0 (0 0	0	0	0	0	0	0 () (0	0	0	0	0	0 (0 (0	0	0	0 0
ID Acce Field Va																													
A-T RW CH[i] (i=019)									(Cha	nnel	l i e	nab	le s	et r	egis	ter.	W	ritin	g '0'	has	s no	eff	ect					
Di	sabled	0							F	Read	d: cł	nanı	nel	disa	ble	d													
En	nabled	1							F	Read	d: cł	nanı	nel	ena	ble	b													
Se	et	1							١	Nrit	e: E	nab	le c	har	nnel														
U-f RW CH[i] (i=2031)									(Cha	nnel	l i e	nab	le s	et r	egis	ter.	W	ritin	g '0'	has	s no	eff	ect					
Di	sabled	0							F	Read	d: cł	nanı	nel	disa	ble	d													
En	nabled	1							F	Read	d: ch	nanı	nel	ena	ble	t													
Se	et	1							١	Vrit	e: E	nab	le c	har	nnel														

6.10.2.5 CHENCLR

Address offset: 0x508

Channel enable clear register

Read: reads value of CH{i} field in CHEN register.

Bit number	31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID	fedcbaZ\	Y X W V U T S R Q P O N M L K J I H G F E D C B A
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		Description
A-T RW CH[i] (i=019)		Channel i enable clear register. Writing '0' has no effect
Disabled	0	Read: channel disabled
Enabled	1	Read: channel enabled
Clear	1	Write: disable channel
U-f RW CH[i] (i=2031)		Channel i enable clear register. Writing '0' has no effect
Disabled	0	Read: channel disabled
Enabled	1	Read: channel enabled
Clear	1	Write: disable channel

6.10.2.6 CH[n].EEP (n=0..19)

Address offset: $0x510 + (n \times 0x8)$

Channel n event end-point

6.10.2.7 CH[n].TEP (n=0..19)

Address offset: $0x514 + (n \times 0x8)$

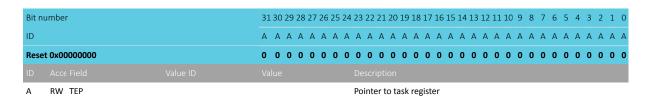
Channel n task end-point

Α	RW TEP	Pointer to task register. Accepts only addresses to registers
ID		
Res	et 0x00000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID		A A A A A A A A A A A A A A A A A A A
Bit r	umber	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

from the Task group.

6.10.2.8 CHG[n] (n=0..5)

Address offset: $0x800 + (n \times 0x4)$


Channel group n

Bit number	31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID	fedcbaZY	/XWVUTSRQPONMLKJIHGFEDCBA
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		Description
A-T RW CH[i] (i=019)		Include or exclude channel i
Excluded	0	Exclude
Included	1	Include
U-f RW CH[i] (i=2031)		Include or exclude channel i
Excluded	0	Exclude
Included	1	Include

6.10.2.9 FORK[n].TEP (n=0..19, 20..31)

Address offset: $0x910 + (n \times 0x4)$

Channel n task end-point

6.11 QDEC — Quadrature decoder

The Quadrature decoder (QDEC) provides buffered decoding of quadrature-encoded sensor signals. It is suitable for mechanical and optical sensors.

The sample period and accumulation are configurable to match application requirements. The QDEC provides the following:

- Decoding of digital waveform from off-chip quadrature encoder.
- Sample accumulation eliminating hard real-time requirements to be enforced on application.
- · Optional input de-bounce filters.
- Optional LED output signal for optical encoders.

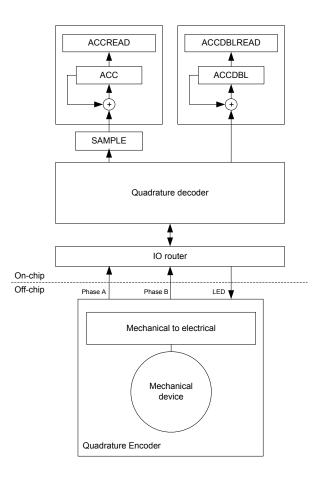


Figure 45: Quadrature decoder configuration

6.11.1 Sampling and decoding

The QDEC decodes the output from an incremental motion encoder by sampling the QDEC phase input pins (A and B).

The off-chip quadrature encoder is an incremental motion encoder outputting two waveforms, phase A and phase B. The two output waveforms are always 90 degrees out of phase, meaning that one always changes level before the other. The direction of movement is indicated by which of these two waveforms that changes level first. Invalid transitions may occur, that is when the two waveforms switch simultaneously. This may occur if the wheel rotates too fast relative to the sample rate set for the decoder.

The QDEC decodes the output from the off-chip encoder by sampling the QDEC phase input pins (A and B) at a fixed rate as specified in the SAMPLEPER register.

If the SAMPLEPER value needs to be changed, the QDEC shall be stopped using the STOP task. SAMPLEPER can be then changed upon receiving the STOPPED event, and QDEC can be restarted using the START task. Failing to do so may result in unpredictable behaviour.

It is good practice to change other registers (LEDPOL, REPORTPER, DBFEN and LEDPRE) only when the QDEC is stopped.

When started, the decoder continuously samples the two input waveforms and decodes these by comparing the current sample pair (n) with the previous sample pair (n-1).

The decoding of the sample pairs is described in the table below.

Previo	ous	Curre	nt	SAMPLE	ACC operation	ACCDBL	Description
samp	le pair(n	sampl	es	register		operation	
- 1)		pair(n)				
Α	В	Α	В				
0	0	0	0	0	No change	No change	No movement
0	0	0	1	1	Increment	No change	Movement in positive direction
0	0	1	0	-1	Decrement	No change	Movement in negative direction
0	0	1	1	2	No change	Increment	Error: Double transition
0	1	0	0	-1	Decrement	No change	Movement in negative direction
0	1	0	1	0	No change	No change	No movement
0	1	1	0	2	No change	Increment	Error: Double transition
0	1	1	1	1	Increment	No change	Movement in positive direction
1	0	0	0	1	Increment	No change	Movement in positive direction
1	0	0	1	2	No change	Increment	Error: Double transition
1	0	1	0	0	No change	No change	No movement
1	0	1	1	-1	Decrement	No change	Movement in negative direction
1	1	0	0	2	No change	Increment	Error: Double transition
1	1	0	1	-1	Decrement	No change	Movement in negative direction
1	1	1	0	1	Increment	No change	Movement in positive direction
1	1	1	1	0	No change	No change	No movement

Table 49: Sampled value encoding

6.11.2 LED output

The LED output follows the sample period, and the LED is switched on a given period before sampling and switched off immediately after the inputs are sampled. The period the LED is switched on before sampling is given in the LEDPRE register.

The LED output pin polarity is specified in the LEDPOL register.

For using off-chip mechanical encoders not requiring a LED, the LED output can be disabled by writing value 'Disconnected' to the CONNECT field of the PSEL.LED register. In this case the QDEC will not acquire access to a LED output pin and the pin can be used for other purposes by the CPU.

6.11.3 Debounce filters

Each of the two-phase inputs have digital debounce filters.

When enabled through the DBFEN register, the filter inputs are sampled at a fixed 1 MHz frequency during the entire sample period (which is specified in the SAMPLEPER register), and the filters require all of the samples within this sample period to equal before the input signal is accepted and transferred to the output of the filter.

As a result, only input signal with a steady state longer than twice the period specified in SAMPLEPER are guaranteed to pass through the filter, and any signal with a steady state shorter than SAMPLEPER will

always be suppressed by the filter. (This is assumed that the frequency during the debounce period never exceeds 500 kHz (as required by the Nyquist theorem when using a 1 MHz sample frequency).

The LED will always be ON when the debounce filters are enabled, as the inputs in this case will be sampled continuously.

Note that when when the debounce filters are enabled, displacements reported by the QDEC peripheral are delayed by one SAMPLEPER period.

6.11.4 Accumulators

The quadrature decoder contains two accumulator registers, ACC and ACCDBL, that accumulate respectively valid motion sample values and the number of detected invalid samples (double transitions).

The ACC register will accumulate all valid values (1/-1) written to the SAMPLE register. This can be useful for preventing hard real-time requirements from being enforced on the application. When using the ACC register the application does not need to read every single sample from the SAMPLE register, but can instead fetch the ACC register whenever it fits the application. The ACC register will always hold the relative movement of the external mechanical device since the previous clearing of the ACC register. Sample values indicating a double transition (2) will not be accumulated in the ACC register.

An ACCOF event will be generated if the ACC receives a SAMPLE value that would cause the register to overflow or underflow. Any SAMPLE value that would cause an ACC overflow or underflow will be discarded, but any samples not causing the ACC to overflow or underflow will still be accepted.

The accumulator ACCDBL accumulates the number of detected double transitions since the previous clearing of the ACCDBL register.

The ACC and ACCDBL registers can be cleared by the READCLRACC and subsequently read using the ACCREAD and ACCDBLREAD registers.

The ACC register can be separately cleared by the RDCLRACC and subsequently read using the ACCREAD registers.

The ACCDBL register can be separately cleared by the RDCLRDBL and subsequently read using the ACCDBLREAD registers.

The REPORTPER register allows automating the capture of several samples before it can send out a REPORTRDY event in case a non-null displacement has been captured and accumulated, and a DBLRDY event in case one or more double-displacements have been captured and accumulated. The REPORTPER field in this register selects after how many samples the accumulators contents are evaluated to send (or not) REPORTRDY and DBLRDY events.

Using the RDCLRACC task (manually sent upon receiving the event, or using the DBLRDY_RDCLRACC shortcut), ACCREAD can then be read.

In case at least one double transition has been captured and accumulated, a DBLRDY event is sent. Using the RDCLRDBL task (manually sent upon receiving the event, or using the DBLRDY_RDCLRDBL shortcut), ACCDBLREAD can then be read.

6.11.5 Output/input pins

The QDEC uses a three-pin interface to the off-chip quadrature encoder.

These pins will be acquired when the QDEC is enabled in the ENABLE register. The pins acquired by the QDEC cannot be written by the CPU, but they can still be read by the CPU.

The pin numbers to be used for the QDEC are selected using the PSEL.n registers.

6.11.6 Pin configuration

The Phase A, Phase B, and LED signals are mapped to physical pins according to the configuration specified in the PSEL.A, PSEL.B, and PSEL.LED registers respectively.

If the CONNECT field value 'Disconnected' is specified in any of these registers, the associated signal will not be connected to any physical pin. The PSEL.A, PSEL.B, and PSEL.LED registers and their configurations are only used as long as the QDEC is enabled, and retained only as long as the device is in ON mode. When the peripheral is disabled, the pins will behave as regular GPIOs, and use the configuration in their respective OUT bit field and PIN CNF[n] register.

To secure correct behavior in the QDEC, the pins used by the QDEC must be configured in the GPIO peripheral as described in GPIO configuration before enabling peripheral on page 154 before enabling the QDEC. This configuration must be retained in the GPIO for the selected IOs as long as the QDEC is enabled.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in unpredictable behavior.

QDEC signal	QDEC pin	Direction	Output value	Comment
Phase A	As specified in PSEL.A	Input	Not applicable	
Phase B	As specified in PSEL.B	Input	Not applicable	
LED	As specified in PSEL.LED	Input	Not applicable	

Table 50: GPIO configuration before enabling peripheral

6.11.7 Registers

Base address	Peripheral	Instance	Description	Configuration
0x40012000	QDEC	QDEC	Quadrature decoder	

Table 51: Instances

Register	Offset	Description
TASKS_START	0x000	Task starting the quadrature decoder
TASKS_STOP	0x004	Task stopping the quadrature decoder
TASKS_READCLRACC	0x008	Read and clear ACC and ACCDBL
TASKS_RDCLRACC	0x00C	Read and clear ACC
TASKS_RDCLRDBL	0x010	Read and clear ACCDBL
EVENTS_SAMPLERDY	0x100	Event being generated for every new sample value written to the SAMPLE register
EVENTS_REPORTRDY	0x104	Non-null report ready
EVENTS_ACCOF	0x108	ACC or ACCDBL register overflow
EVENTS_DBLRDY	0x10C	Double displacement(s) detected
EVENTS_STOPPED	0x110	QDEC has been stopped
SHORTS	0x200	Shortcuts between local events and tasks
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt
ENABLE	0x500	Enable the quadrature decoder
LEDPOL	0x504	LED output pin polarity
SAMPLEPER	0x508	Sample period
SAMPLE	0x50C	Motion sample value
REPORTPER	0x510	Number of samples to be taken before REPORTRDY and DBLRDY events can be generated
ACC	0x514	Register accumulating the valid transitions
ACCREAD	0x518	Snapshot of the ACC register, updated by the READCLRACC or RDCLRACC task
PSEL.LED	0x51C	Pin select for LED signal

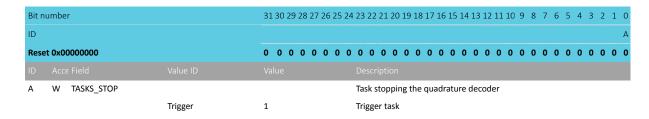
Register	Offset	Description
PSEL.A	0x520	Pin select for A signal
PSEL.B	0x524	Pin select for B signal
DBFEN	0x528	Enable input debounce filters
LEDPRE	0x540	Time period the LED is switched ON prior to sampling
ACCDBL	0x544	Register accumulating the number of detected double transitions
ACCDBLREAD	0x548	Snapshot of the ACCDBL, updated by the READCLRACC or RDCLRDBL task

Table 52: Register overview

6.11.7.1 TASKS_START

Address offset: 0x000

Task starting the quadrature decoder

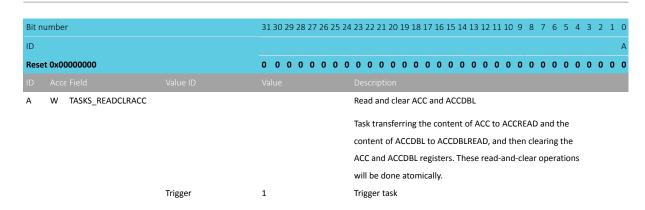

When started, the SAMPLE register will be continuously updated at the rate given in the SAMPLEPER register.

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	W TASKS_START			Task starting the quadrature decoder
				When started, the SAMPLE register will be continuously
				updated at the rate given in the SAMPLEPER register.
		Trigger	1	Trigger task

6.11.7.2 TASKS STOP

Address offset: 0x004

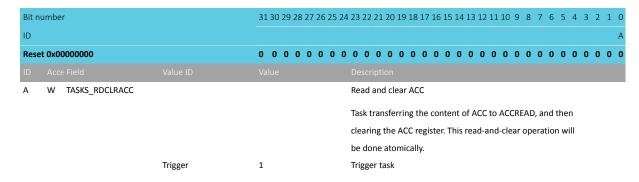
Task stopping the quadrature decoder


6.11.7.3 TASKS_READCLRACC

Address offset: 0x008

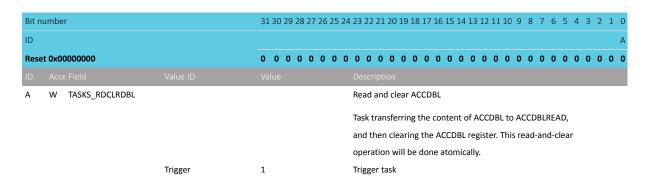
Read and clear ACC and ACCDBL

Task transferring the content of ACC to ACCREAD and the content of ACCDBL to ACCDBLREAD, and then clearing the ACC and ACCDBL registers. These read-and-clear operations will be done atomically.



6.11.7.4 TASKS_RDCLRACC

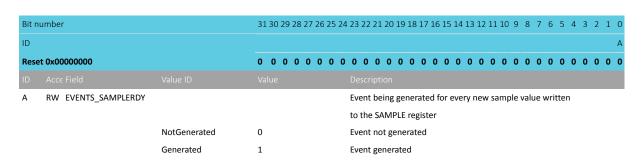
Address offset: 0x00C Read and clear ACC


Task transferring the content of ACC to ACCREAD, and then clearing the ACC register. This read-and-clear operation will be done atomically.

6.11.7.5 TASKS RDCLRDBL

Address offset: 0x010
Read and clear ACCDBL

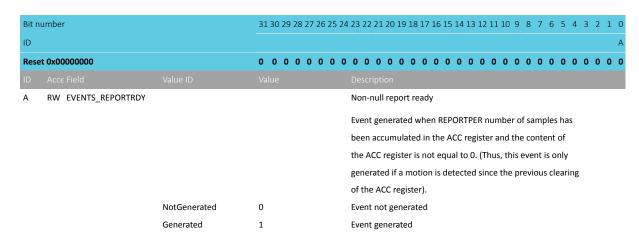
Task transferring the content of ACCDBL to ACCDBLREAD, and then clearing the ACCDBL register. This readand-clear operation will be done atomically.



6.11.7.6 EVENTS SAMPLERDY

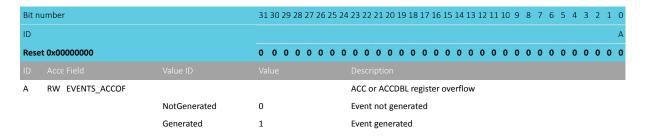
Address offset: 0x100

Event being generated for every new sample value written to the SAMPLE register



6.11.7.7 EVENTS_REPORTRDY

Address offset: 0x104 Non-null report ready


Event generated when REPORTPER number of samples has been accumulated in the ACC register and the content of the ACC register is not equal to 0. (Thus, this event is only generated if a motion is detected since the previous clearing of the ACC register).

6.11.7.8 EVENTS ACCOF

Address offset: 0x108

ACC or ACCDBL register overflow



6.11.7.9 EVENTS_DBLRDY

Address offset: 0x10C

Double displacement(s) detected

Event generated when REPORTPER number of samples has been accumulated and the content of the ACCDBL register is not equal to 0. (Thus, this event is only generated if a double transition is detected since the previous clearing of the ACCDBL register).

Bit n	umber		31 30 2	29 28	27	26 2	5 24	4 2	3 2	22 2	1 2	20 1	19 1	81	7 16	5 15	14	13	12	11	10	9	8	7	6 5	5 4	4 3	2	1	0
ID																														Α
Rese	t 0x00000000		0 0	0 0	0	0 (0) (0	0 (0	0	0 () (0 0	0	0	0	0	0	0	0	0	0	0 () (0 0	0	0	0
ID																														
Α	RW EVENTS_DBLRDY							D	οι	uble	di	spla	acei	mei	nt(s) de	tec	ted												
								E	ve	nt g	gen	era	ted	wh	ien	REP	OR	TPE	R n	um	ber	of	san	npl	es h	nas				
								b	ee	n ad	ccu	ımı	ılate	ed a	and	the	со	nte	nt c	f th	ne A	CC	DBL	. re	gist	er				
								is	s n	ot e	qu	al t	о О.	. (TI	hus	, thi	s e	ven	t is	onl	y ge	ene	rate	d i	f a					
								d	lou	ıble	tra	nsi	itior	n is	det	ect	ed s	sinc	e tł	ne p	rev	iou	s cl	ear	ing	of				
								tŀ	he	ACC	CDI	BL r	egi	stei	r).															
		NotGenerated	0					E	ve	nt n	ot	gei	nera	ateo	b															
		Generated	1					E	ve	nt g	gen	era	ted																	

6.11.7.10 EVENTS_STOPPED

Address offset: 0x110

QDEC has been stopped

Bit number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1	211109876543210
ID		А
Reset 0x00000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		
A RW EVENTS_STOPPED	QDEC has been stopped	
NotGenerated	0 Event not generated	
Generated	1 Event generated	

6.11.7.11 SHORTS

Address offset: 0x200

Shortcuts between local events and tasks

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				G F E D C B A
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW REPORTRDY_READCLRA	ACC .		Shortcut between event REPORTRDY and task READCLRACC
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
В	RW SAMPLERDY_STOP			Shortcut between event SAMPLERDY and task STOP
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
С	RW REPORTRDY_RDCLRACO			Shortcut between event REPORTRDY and task RDCLRACC
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
D	RW REPORTRDY_STOP			Shortcut between event REPORTRDY and task STOP
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
E	RW DBLRDY_RDCLRDBL			Shortcut between event DBLRDY and task RDCLRDBL
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
F	RW DBLRDY_STOP			Shortcut between event DBLRDY and task STOP
		Disabled	0	Disable shortcut

Bit n	umber		313	0 2:	9 28	27	26	25	24 :	23 2	2 2	1 20	0 19	18	17	16 1	l5 1	4 13	3 12	11	10 9	8	7	6	5	4	3	2	1 0
ID																								G	F	Ε	D	С	3 A
Rese	t 0x00000000		0 (0 0	0	0	0	0	0	0 (0 (0 0	0	0	0	0	0 (0	0	0	0 (0	0	0	0	0	0	0 (0 0
ID										Des																			
		Enabled	1							Enal	ble	sho	rtcu	t															
G	RW SAMPLERDY_READCLRA	ACC							:	Sho	rtcı	ut b	etwe	een	eve	nt :	SAN	1PLI	ERD'	/ an	d ta	sk R	EAD	OCL	RAG	CC			
		Disabled	0						-	Disa	ble	sho	ortcı	ut															
		Enabled	1							Enal	ble	sho	rtcu	t															

6.11.7.12 INTENSET

Address offset: 0x304

Enable interrupt

Bit n	umber		31 30 29 28 27	7 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				E D C B A
Rese	et 0x00000000		0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Α	RW SAMPLERDY			Write '1' to enable interrupt for event SAMPLERDY
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
В	RW REPORTRDY			Write '1' to enable interrupt for event REPORTRDY
				Event generated when REPORTPER number of samples has
				been accumulated in the ACC register and the content of
				the ACC register is not equal to 0. (Thus, this event is only
				generated if a motion is detected since the previous clearing
				of the ACC register).
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
С	RW ACCOF			Write '1' to enable interrupt for event ACCOF
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
D	RW DBLRDY			Write '1' to enable interrupt for event DBLRDY
				Event generated when REPORTPER number of samples has
				been accumulated and the content of the ACCDBL register
				is not equal to 0. (Thus, this event is only generated if a
				double transition is detected since the previous clearing of
				the ACCDBL register).
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Ε	RW STOPPED			Write '1' to enable interrupt for event STOPPED
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

6.11.7.13 INTENCLR

Address offset: 0x308

Disable interrupt

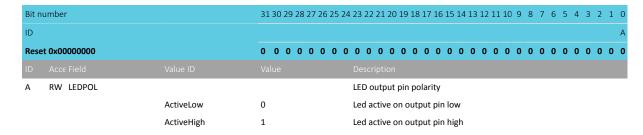
NORDIC

Bit r	number		31 30 29 28 27 26	25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
ID					E D C B
Res	et 0x00000000		0 0 0 0 0 0	0 (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Α	RW SAMPLERDY				Write '1' to disable interrupt for event SAMPLERDY
		Clear	1		Disable
		Disabled	0		Read: Disabled
		Enabled	1		Read: Enabled
В	RW REPORTRDY				Write '1' to disable interrupt for event REPORTRDY
					Event generated when REPORTPER number of samples has
					been accumulated in the ACC register and the content of
					the ACC register is not equal to 0. (Thus, this event is only
					generated if a motion is detected since the previous clearing
					of the ACC register).
		Clear	1		Disable
		Disabled	0		Read: Disabled
		Enabled	1		Read: Enabled
С	RW ACCOF				Write '1' to disable interrupt for event ACCOF
		Clear	1		Disable
		Disabled	0		Read: Disabled
		Enabled	1		Read: Enabled
D	RW DBLRDY				Write '1' to disable interrupt for event DBLRDY
					Event generated when REPORTPER number of samples has
					been accumulated and the content of the ACCDBL register
					is not equal to 0. (Thus, this event is only generated if a
					double transition is detected since the previous clearing of
					the ACCDBL register).
		Clear	1		Disable
		Disabled	0		Read: Disabled
		Enabled	1		Read: Enabled
E	RW STOPPED	Lilabica	1		Write '1' to disable interrupt for event STOPPED
_	5.525	Clear	1		Disable
		Disabled	0		Read: Disabled
		Enabled	1		Read: Enabled

6.11.7.14 ENABLE

Address offset: 0x500

Enable the quadrature decoder


Bit number		31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			А
Reset 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A RW ENABLE			Enable or disable the quadrature decoder
			When enabled the decoder pins will be active. When
			disabled the quadrature decoder pins are not active and can
			be used as GPIO .
	Disabled	0	Disable
	Enabled	1	Enable
	Enabled	1	Enable

6.11.7.15 LEDPOL

Address offset: 0x504

LED output pin polarity

6.11.7.16 SAMPLEPER

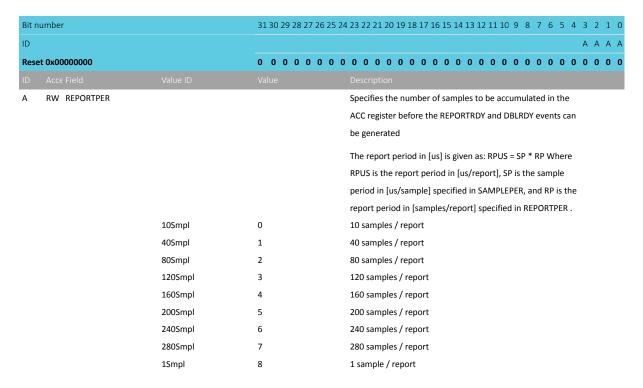
Address offset: 0x508

Sample period

Bit r	number		31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				АААА
Res	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW SAMPLEPER			Sample period. The SAMPLE register will be updated for
				every new sample
		128us	0	128 us
		256us	1	256 us
		512us	2	512 us
		1024us	3	1024 us
		2048us	4	2048 us
		4096us	5	4096 us
		8192us	6	8192 us
		16384us	7	16384 us
		32ms	8	32768 us
		65ms	9	65536 us
		131ms	10	131072 us

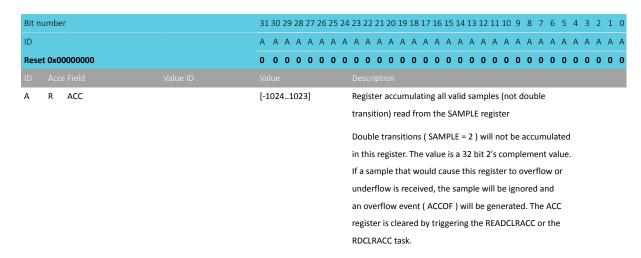
6.11.7.17 SAMPLE

Address offset: 0x50C Motion sample value


Bit n	umber		31	30 2	29 2	28 2	7 26	5 25	5 24	1 23	3 2:	2 21	L 20	19	18 1	17 :	16 :	15 3	14	13 :	12 1	11 1	0 9	8	7	6	5	4	3	2 1	. 0
ID			Α	Α	A	A A	4 A	. A	A	Д	Α Α	A	Α	Α	Α	Α	Α	Α	Α	Α	Α.	A A	4 A	Α	Α	Α	Α	Α	Α ,	ДД	A A
Rese	t 0x00	000000	0	0	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0 (0 0	0 0
ID																															
Α	R	SAMPLE	[-1.	2]						La	ast	mo	tion	sar	nple	е															
													ie is n of											_	_			e			
												sitio																			

6.11.7.18 REPORTPER

Address offset: 0x510


Number of samples to be taken before REPORTRDY and DBLRDY events can be generated

6.11.7.19 ACC

Address offset: 0x514

Register accumulating the valid transitions

6.11.7.20 ACCREAD

Address offset: 0x518

Snapshot of the ACC register, updated by the READCLRACC or RDCLRACC task

Bit number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 (
ID	A A A A A A A A A A A A A A A A A A A
Reset 0x00000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID	

The ACCREAD register is updated when the READCLRACC or RDCLRACC task is triggered

6.11.7.21 PSEL.LED

Address offset: 0x51C Pin select for LED signal

Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	АААА
Rese	t OxFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				Description
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect

6.11.7.22 PSEL.A

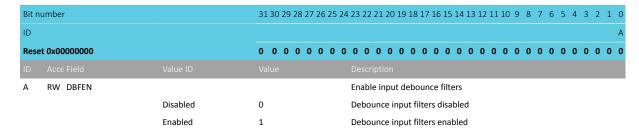
Address offset: 0x520 Pin select for A signal

Bit n	umber		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	АААА
Rese	t OxFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect

6.11.7.23 PSEL.B

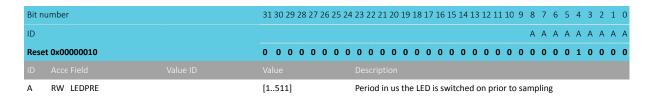
Address offset: 0x524 Pin select for B signal

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	АААА
Rese	t OxFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				Description
Α	RW PIN		[031]	Pin number
A C	RW PIN RW CONNECT		[031]	Pin number Connection
		Disconnected	[031]	



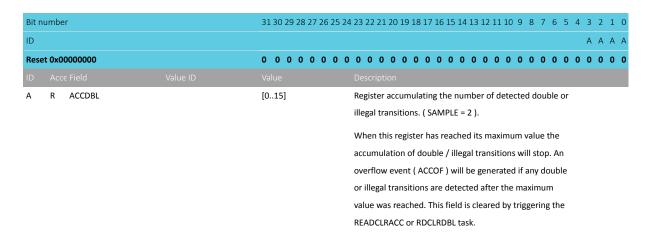
6.11.7.24 DBFEN

Address offset: 0x528


Enable input debounce filters

6.11.7.25 LEDPRE

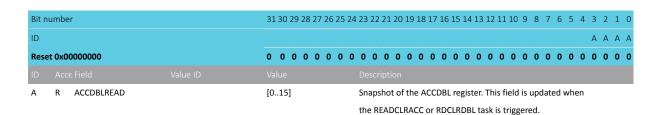
Address offset: 0x540


Time period the LED is switched ON prior to sampling

6.11.7.26 ACCDBL

Address offset: 0x544

Register accumulating the number of detected double transitions



6.11.7.27 ACCDBLREAD

Address offset: 0x548

Snapshot of the ACCDBL, updated by the READCLRACC or RDCLRDBL task

6.11.8 Electrical specification

6.11.8.1 QDEC Electrical Specification

Symbol	Description	Min.	Тур.	Max.	Units
t _{SAMPLE}	Time between sampling signals from quadrature decoder	128		131072	μs
t _{LED}	Time from LED is turned on to signals are sampled	0		511	μs

6.12 RADIO — 2.4 GHz radio

The 2.4 GHz radio transceiver is compatible with multiple radio standards such as 1 Mbps and 2 Mbps Bluetooth® Low Energy modes, Long Range (125 kbps and 500 kbps) Bluetooth® Low Energy modes, IEEE 802.15.4 250 kbps mode, as well as Nordic's proprietary 1 Mbps and 2 Mbps modes.

Listed here are main features for the RADIO:

- Multidomain 2.4 GHz radio transceiver
 - 1 Mbps and 2 Mbps Bluetooth® Low Energy modes
 - Long Range (125 kbps and 500 kbps) Bluetooth® Low Energy modes
 - Angle-of-arrival (AoA) and angle-of-departure (AoD) direction finding using *Bluetooth*[®] Low Energy
 - IEEE 802.15.4 250 kbps mode
 - 1 Mbps and 2 Mbps Nordic proprietary modes
- Best in class link budget and low power operation
- Efficient data interface with EasyDMA support
- · Automatic address filtering and pattern matching

EasyDMA, in combination with an automated packet assembler, packet disassembler, automated CRC generator and CRC checker, makes it easy to configure and use the RADIO. See the following figure for details.

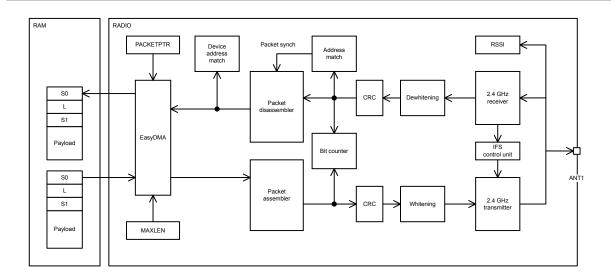


Figure 46: RADIO block diagram

The RADIO includes a device address match unit and an interframe spacing control unit that can be utilized to simplify address whitelisting and interframe spacing respectively in *Bluetooth*[®] low energy and similar applications.

The RADIO also includes a received signal strength indicator (RSSI) and a bit counter. The bit counter generates events when a preconfigured number of bits are sent or received by the RADIO.

6.12.1 Packet configuration

A RADIO packet contains the fields PREAMBLE, ADDRESS, S0, LENGTH, S1, PAYLOAD, and CRC. For Long Range (125 kbps and 500 kbps) *Bluetooth*[®] Low Energy modes, fields CI, TERM1 and TERM2 are also included.

The content of a RADIO packet is illustrated in the figures below. The RADIO sends the fields in the packet according to the order illustrated in the figures, starting on the left.

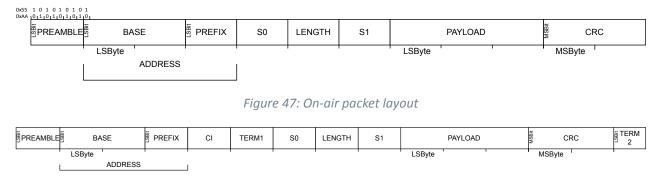


Figure 48: On-air packet layout for Long Range (125 kbps and 500 kbps) Bluetooth[®] Low Energy modes

Not shown in the figures is the static payload add-on (the length of which is defined in PCNF1.STATLEN, and which is 0 bytes in a standard BLE packet). The static payload add-on is sent between PAYLOAD and CRC fields. The RADIO sends the different fields in the packet in the order they are illustrated above, from left to right.

PREAMBLE is sent with least significant bit first on air. The size of the PREAMBLE depends on the mode selected in the MODE register:

The PREAMBLE is one byte for MODE = Ble_1Mbit as well as all Nordic proprietary operating modes
 (MODE = Nrf_1Mbit and MODE = Nrf_2Mbit), and PCNFO.PLEN has to be set accordingly. If the first bit
 of the ADDRESS is 0, the preamble will be set to 0xAA. Otherwise the PREAMBLE will be set to 0x55.

NORDIC

- For MODE = Ble_2Mbit, the PREAMBLE must be set to 2 byte through PCNF0.PLEN. If the first bit of the ADDRESS is 0, the preamble will be set to 0xAAAA. Otherwise the PREAMBLE will be set to 0x55555.
- For MODE = Ble LR125Kbit and MODE = Ble LR500Kbit, the PREAMBLE is 10 repetitions of 0x3C.
- For MODE = leee802154_250Kbit, the PREAMBLE is 4 bytes and set to all zeros.

Radio packets are stored in memory inside instances of a RADIO packet data structure as illustrated below. The PREAMBLE, ADDRESS, CI, TERM1, TERM2, and CRC fields are omitted in this data structure. Fields SO, LENGTH, and S1 are optional.

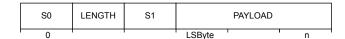


Figure 49: In-RAM representation of RADIO packet

The byte ordering on air is always least significant byte first for the ADDRESS and PAYLOAD fields, and most significant byte first for the CRC field. The ADDRESS fields are always transmitted and received least significant bit first. The CRC field is always transmitted and received most significant bit first. The endianness, i.e. the order in which the bits are sent and received, of the SO, LENGTH, S1, and PAYLOAD fields can be configured via PCNF1.ENDIAN.

The sizes of the SO, LENGTH and S1 fields can be individually configured via SOLEN, LFLEN, and S1LEN in PCNFO respectively. If any of these fields are configured to be less than 8 bits, the least significant bits of the fields are used.

If S0, LENGTH, or S1 are specified with zero length, their fields will be omitted in memory. Otherwise each field will be represented as a separate byte, regardless of the number of bits in their on-air counterpart.

Independent of the configuration of PCNF1.MAXLEN, the combined length of SO, LENGTH, S1, and PAYLOAD cannot exceed 258 bytes.

6.12.2 Address configuration

The on-air radio ADDRESS field is composed of two parts, the base address field and the address prefix field.

The size of the base address field is configurable via PCNF1.BALEN. The base address is truncated from the least significant byte if the PCNF1.BALEN is less than 4. See Definition of logical addresses on page 167.

Logical address	Base address	Prefix byte
0	BASE0	PREFIXO.APO
1	BASE1	PREFIXO.AP1
2	BASE1	PREFIXO.AP2
3	BASE1	PREFIXO.AP3
4	BASE1	PREFIX1.AP4
5	BASE1	PREFIX1.AP5
6	BASE1	PREFIX1.AP6
7	BASE1	PREFIX1.AP7

Table 53: Definition of logical addresses

The on-air addresses are defined in the BASEO/BASE1 and PREFIXO/PREFIX1 registers. It is only when writing these registers that the user must relate to the actual on-air addresses. For other radio address registers, such as the TXADDRESS, RXADDRESSES, and RXMATCH registers, logical radio addresses ranging from 0 to 7 are being used. The relationship between the on-air radio addresses and the logical addresses is described in Definition of logical addresses on page 167.

6.12.3 Data whitening

The RADIO is able to do packet whitening and de-whitening, enabled in PCNF1.WHITEEN. When enabled, whitening and de-whitening will be handled by the RADIO automatically as packets are sent and received.

The whitening word is generated using polynomial $g(D) = D^7 + D^4 + 1$, which then is XORed with the data packet that is to be whitened, or de-whitened. See the figure below.

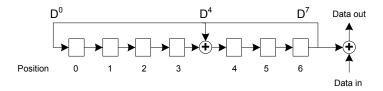


Figure 50: Data whitening and de-whitening

Whitening and de-whitening will be performed over the whole packet except for the preamble and the address fields.

The linear feedback shift register in the figure above is initialized via DATAWHITEIV.

6.12.4 CRC

The CRC generator in the RADIO calculates the CRC over the whole packet excluding the preamble. If desirable, the address field can be excluded from the CRC calculation as well.

See CRCCNF register for more information.

The CRC polynomial is configurable as illustrated in the following figure, where bit 0 in the CRCPOLY register corresponds to X^0 and bit 1 corresponds to X^1 etc. See CRCPOLY on page 213 for more information.

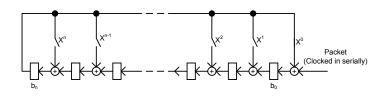


Figure 51: CRC generation of an n bit CRC

The figure shows that the CRC is calculated by feeding the packet serially through the CRC generator. Before the packet is clocked through the CRC generator, the CRC generator's latches b_0 through b_n will be initialized with a predefined value specified in the CRCINIT register. After the whole packet has been clocked through the CRC generator, b_0 through b_n will hold the resulting CRC. This value will be used by the RADIO during both transmission and reception. Latches b_0 through b_n are not available to be read by the CPU at any time. However, a received CRC can be read by the CPU via the RXCRC register.

The length (n) of the CRC is configurable, see CRCCNF for more information.

Once the entire packet, including the CRC, has been received and no errors were detected, the RADIO generates a CRCOK event. If CRC errors were detected, a CRCERROR event is generated.

NORDIC

The status of the CRC check can be read from the CRCSTATUS register after a packet has been received.

6.12.5 Radio states

Tasks and events are used to control the operating state of the RADIO.

The RADIO can enter the states described the table below.

State	Description
DISABLED	No operations are going on inside the RADIO and the power consumption is at a minimum
RXRU	The RADIO is ramping up and preparing for reception
RXIDLE	The RADIO is ready for reception to start
RX	Reception has been started and the addresses enabled in the RXADDRESSES register are being monitored
TXRU	The RADIO is ramping up and preparing for transmission
TXIDLE	The RADIO is ready for transmission to start
TX	The RADIO is transmitting a packet
RXDISABLE	The RADIO is disabling the receiver
TXDISABLE	The RADIO is disabling the transmitter

Table 54: RADIO state diagram

A state diagram showing an overview of the RADIO is shown in the following figure.

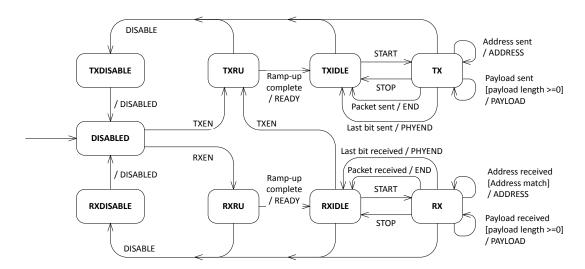


Figure 52: Radio states

This figure shows how the tasks and events relate to the RADIO's operation. The RADIO does not prevent a task from being triggered from the wrong state. If a task is triggered from the wrong state, for example if the RXEN task is triggered from the RXDISABLE state, this may lead to incorrect behavior. The PAYLOAD event is always generated even if the payload is zero.

The END to START shortcut should not be used with IEEE 802.15.4 250 kbps mode. Use the PHYEND to START shortcut instead.

The END to START shortcut should not be used with Long Range (125 kbps and 500 kbps) *Bluetooth* [®] Low Energy modes. Use the PHYEND to START shortcut instead.

6.12.6 Transmit sequence

Before the RADIO is able to transmit a packet, it must first ramp-up in TX mode. See TXRU in Radio states on page 169 and Transmit sequence on page 170. A TXRU ramp-up sequence is initiated when the

TXEN task is triggered. After the RADIO has successfully ramped up it will generate the READY event indicating that a packet transmission can be initiated. A packet transmission is initiated by triggering the START task. The START task can first be triggered after the RADIO has entered into the TXIDLE state.

The following figure illustrates a single packet transmission where the CPU manually triggers the different tasks needed to control the flow of the RADIO, i.e. no shortcuts are used. If shortcuts are not used, a certain amount of delay caused by CPU execution is expected between READY and START, and between END and DISABLE. As illustrated in Transmit sequence on page 170 the RADIO will by default transmit '1's between READY and START, and between END and DISABLED. What is transmitted can be programmed through the DTX field in the MODECNFO register.

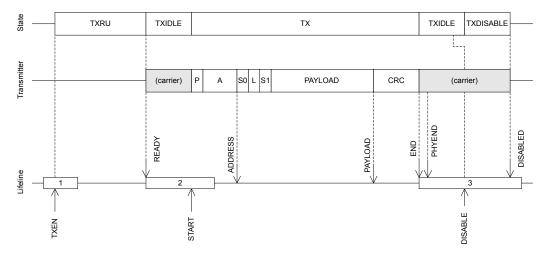


Figure 53: Transmit sequence

The following figure shows a slightly modified version of the transmit sequence where the RADIO is configured to use shortcuts between READY and START, and between END and DISABLE, which means that no delay is introduced.

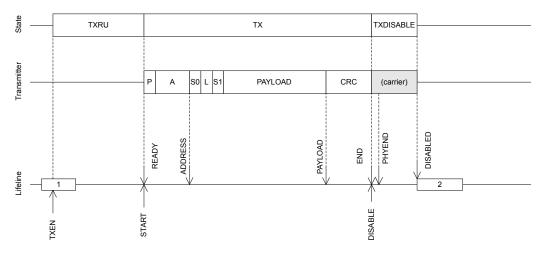


Figure 54: Transmit sequence using shortcuts to avoid delays

The RADIO is able to send multiple packets one after the other without having to disable and re-enable the RADIO between packets, as illustrated in the following figure.

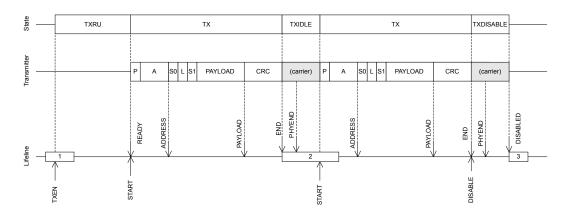


Figure 55: Transmission of multiple packets

6.12.7 Receive sequence

Before the RADIO is able to receive a packet, it must first ramp up in RX mode, see RXRU in Radio states on page 169 and Receive sequence on page 171.

An RXRU ramp up sequence is initiated when the RXEN task is triggered. After the RADIO has successfully ramped up it will generate the READY event indicating that a packet reception can be initiated. A packet reception is initiated by triggering the START task. As illustrated in Radio states on page 169, the START task can first be triggered after the RADIO has entered into the RXIDLE state.

The following figure shows a single packet reception where the CPU manually triggers the different tasks needed to control the flow of the RADIO, i.e. no shortcuts are used. If shortcuts are not used, a certain amount of delay caused by CPU execution is expected between READY and START, and between END and DISABLE. The RADIO will be listening and possibly receiving undefined data, represented with an 'X', from START and until a packet with valid preamble (P) is received.

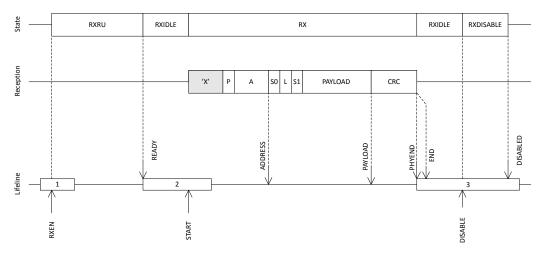


Figure 56: Receive sequence

The following figure shows a slightly modified version of the receive sequence, where the RADIO is configured to use shortcuts between READY and START, and between END and DISABLE, which means that no delay is introduced.

NOPDIC

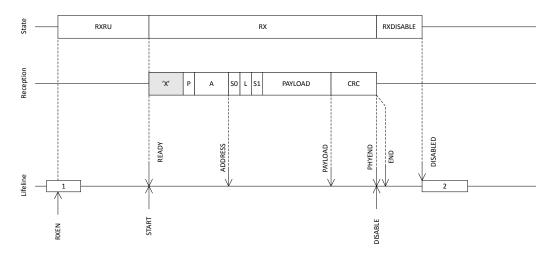


Figure 57: Receive sequence using shortcuts to avoid delays

The RADIO is able to receive consecutive packets without having to disable and re-enable the RADIO between packets, as illustrated in the figure below.

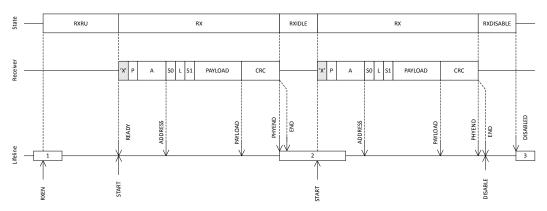


Figure 58: Reception of multiple packets

6.12.8 Received signal strength indicator (RSSI)

The RADIO implements a mechanism for measuring the power in the received signal. This feature is called received signal strength indicator (RSSI).

The RSSI is measured continuously and the value filtered using a single-pole IIR filter. After a signal level change, the RSSI will settle after approximately RSSI_{SETTLE}.

Sampling of the received signal strength is started by using the RSSISTART task. The sample can be read from the RSSISAMPLE register.

The sample period of the RSSI is defined by RSSI_{PERIOD}. The RSSISAMPLE will hold the filtered received signal strength after this sample period.

For the RSSI sample to be valid, the RADIO has to be enabled in receive mode (RXEN task) and the reception has to be started (READY event followed by START task).

6.12.9 Interframe spacing (IFS)

Interframe spacing (IFS) is defined as the time, in microseconds, between two consecutive packets, starting from when the end of the last bit of the previous packet is received, to the beginning of the first bit of the subsequent packet that is transmitted. The RADIO is able to enforce this interval, as specified in the TIFS register, as long as the TIFS is not specified to be shorter than the RADIO's turnaround time, i.e.

the time needed to switch off the receiver, and then switch the transmitter back on. The TIFS register can be written any time before the last bit on air is received.

This timing is illustrated in the figure below.

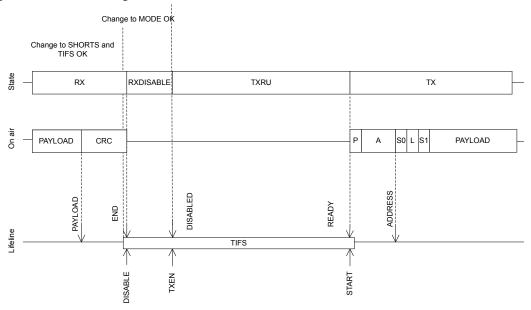


Figure 59: IFS timing detail

The TIFS duration starts after the last bit on air (just before the END event), and elapses with first bit being transmitted on air (just after READY event).

TIFS is only enforced if the shortcuts END to DISABLE and DISABLED to TXEN or END to DISABLE and DISABLED to RXEN are enabled.

TIFS is qualified for use in IEEE 802.15.4 250kbps mode, Long Range (125 kbps and 500 kbps) *Bluetooth*[®] Low Energy modes, 1 Mbps and 2 Mbps *Bluetooth*[®] Low Energy modes, using the default ramp-up mode.

SHORTS and TIFS registers are not double-buffered, and can be updated at any point before the last bit on air is received. The MODE register is double-buffered and sampled at the TXEN or RXEN task.

6.12.10 Device address match

The device address match feature is tailored for address whitelisting in $Bluetooth^{®}$ low energy and similar implementations.

This feature enables on-the-fly device address matching while receiving a packet on air. This feature only works in receive mode and when the RADIO is configured for little endian, see PCNF1.ENDIAN.

The device address match unit assumes that the first 48 bits of the payload are the device address and that bit number 6 in S0 is the TxAdd bit. See the *Bluetooth*[®] Core Specification for more information about device addresses, TxAdd, and whitelisting.

The RADIO is able to listen for eight different device addresses at the same time. These addresses are specified in a DAB/DAP register pair, one pair per address, in addition to a TxAdd bit configured in the DACNF register. The DAB register specifies the 32 least significant bits of the device address, while the DAP register specifies the 16 most significant bits of the device address.

Each of the device addresses can be individually included or excluded from the matching mechanism. This is configured in the DACNF register.

6.12.11 Bit counter

The RADIO implements a simple counter that can be configured to generate an event after a specific number of bits have been transmitted or received.

By using shortcuts, this counter can be started from different events generated by the RADIO and count relative to these.

The bit counter is started by triggering the BCSTART task, and stopped by triggering the BCSTOP task. A BCMATCH event will be generated when the bit counter has counted the number of bits specified in the BCC register. The bit counter will continue to count bits until the DISABLED event is generated or until the BCSTOP task is triggered. The CPU can therefore, after a BCMATCH event, reconfigure the BCC value for new BCMATCH events within the same packet.

The bit counter can only be started after the RADIO has received the ADDRESS event.

The bit counter will stop and reset on either the BCSTOP, STOP, or DISABLE task, or the END event.

The figure below illustrates how the bit counter can be used to generate a BCMATCH event in the beginning of the packet payload, and again generate a second BCMATCH event after sending 2 bytes (16 bits) of the payload.

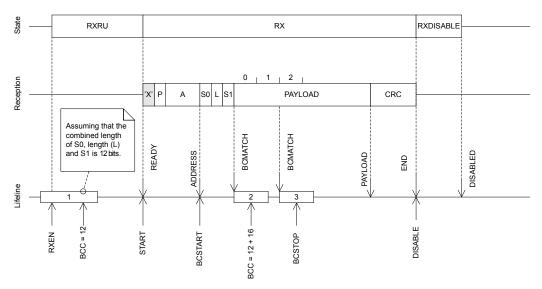


Figure 60: Bit counter example

6.12.12 Direction finding

The RADIO implements the Angle-of-Arrival (AoA) and Angle-of-Departure (AoD) Bluetooth Low Energy feature, which can be used to determine the direction of a peer device. The feature is available for the BLE 1 Mbps and BLE 2 Mbps modes.

When using this feature, the transmitter sends a packet with a continuous tone extension (CTE) appended to the packet, after the CRC. During the CTE, the receiver can take IQ samples of the incoming signal.

An antenna array is employed at the transmitter (AoD) or at the receiver (AoA). The AoD transmitter, or AoA receiver, switches between the antennas, in order to collect IQ samples from the different antenna pairs. The IQ samples can be used to calculate the relative path lengths between the antenna pairs, which can be used to estimate the direction of the transmitter.

6.12.12.1 CTE format

The CTE is from 16 μ s to 160 μ s and consists of an unwhitened sequence of 1's, equivalent to a continuous tone nominally offset from the carrier by +250 kHz for the 1 Mbps PHY and +500 kHz for the 2 Mbps BLE PHYs. The format of the CTE, when switching and/or sampling, is shown below.

NORDIC

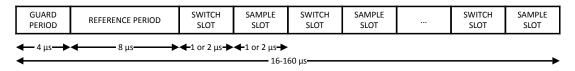


Figure 61: Constant tone extension (CTE) structure

Antenna switching is performed during switch slots and the guard period. The AoA/AoD feature requires that one IQ sample is taken for each microsecond within the reference period, and once for each sample slot. Oversampling is possible by changing the sample spacing as described in IQ sampling on page 178. The switch slot and sample slot durations are either 1 or 2 μ s, but must be equal. The format of the CTE and switching and sampling procedures may be configured prior to, or during, packet transmission and reception. Alternatively, during packet reception, these operations can be configured by reading specific fields of the packet contents.

6.12.12.2 Mode

Depending on the DFEMODE, the device performs the following procedures:

			DFEN	MODE	
		AOA	١	AC	D
		тх	RX	тх	RX
	Generating and transmitting CTE	х		х	
AoA/AoD Procedure	Receiving, interpreting, and sampling CTE		x		х
	Antenna switching		х	x	

Table 55: AoA/AoD Procedures performed as a function of DFEMODE and TX/RX mode

6.12.12.3 Inline configuration

When inline configuration is enabled during RX, further configuration of the AoA/AoD procedures is performed based on the values of the CP bit and the CTEInfo octet within the packet. This is enabled by setting CTEINLINECONF.CTEINLINECTRLEN. The CTEInfo octet is present only if the CP bit is set. The position of the CP bit and CTEInfo octet depends on whether the packet has a *Data Channel PDU* (CTEINLINECONF.CTEINFOINS1=InS1), or an *Advertising Channel PDU* (CTEINLINECONF.CTEINFOINS1=NotInS1).

Data channel PDU

For Data Channel PDUs, PCNF0.SOLEN must be 1 byte, and PCNF0.LFLEN must be 8 bits. To determine if S1 is present, the registers CTEINLINECONF.SOMASK and CTEINLINECONF.SOCONF forms a bitwise mask-and-test for the S0 field. If the bitwise AND between S0 and S0MASK equals S0CONF, then S1 is determined to be present. When present, the value of PCNF0.S1LEN will be ignored, as this is decided by the CP bit in the the following figure.

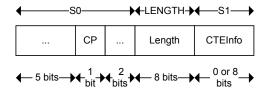


Figure 62: Data channel PDU header

When encrypting and decrypting BLE packets using the CCM peripheral, it is also required to set PCNF0.S1INCL=1. The CCM mode must be configured to use an 8-bit length field. The value of the CP bit is included in the calculation of the MIC, while the S1 field is ignored by the CCM calculation.

Advertising channel PDU

For advertising channel PDUs, the CTEInfo Flag replaces the CP bit. The CTEInfo Flag is within the extended header flag field in some of the advertising PDUs that employ the common extended advertising payload format (i.e. AUX_SYNC_IND, AUX_CHAIN_IND). The format of such packets is shown in the following figure.

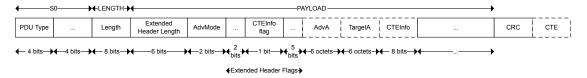


Figure 63: Advertising channel PDU header

The CTEINLINECONF.SOCONF and CTEINLINECONF.SOMASK fields can be configured to accept only certain advertising PDU Types. If the extended header length is non-zero, the CTEInfo extended header flag is checked to determine whether CTEInfo is present. If a bit before the CTEInfo flag within the extended header flags is set, then the CTEInfo position is postponed 6 octets.

CTEInfo parsing

The CTEInfo field is shown in the following figure.

Figure 64: CTEInfo field

The CTETIME field defines the length of the CTE in 8 μ s units. The valid upper bound of values can be adjusted using CTEINLINECONF.CTETIMEVALIDRANGE, including allowing use of the RFU bit within this field. If the CTETIME field is an invalid value of either 0 or 1, the CTE is assumed to be the minimum valid length of 16 μ s. The slot duration is determined by the CTEType field. In RX this determines whether the sample spacing as defined in CTEINLINECONF.CTEINLINERXMODE1US or CTEINLINECONF.CTEINLINERXMODE2US is used.

СТЕТуре	Description	TX switch spacing	RX sample spacing during	Sample spacing RX during
			reference period	reference period
0	AoA, no switching	-	TSAMPLESPACING1	TSAMPLESPACING2
1	AoD, 1 μs slots	2 μs	TSAMPLESPACING1	CTEINLINERXMODE1US
2	AoD, 2 μs slots	4 μs	TSAMPLESPACING1	CTEINLINERXMODE2US
3	Reserved for future use			

Table 56: Switching and sampling spacing based on CTEType

6.12.12.4 Manual configuration

If CTEINLINECONF.CTEINLINECTRLEN is not set, then the packet is not parsed to determine the CTE parameters, and the antenna switching and sampling is controlled by other registers, see Antenna switching on page 177. The length of the CTE is given in 8 μs units by DFECTRL1.NUMBEROF8US. The start of the antenna switching and/or sampling (denoted as an AoA/AoD procedure), can be configured to start at some trigger with an additional offset. Using DFECTRL1.DFEINEXTENSION, the trigger can be configured to be the end of the CRC, or alternatively, the ADDRESS event. The additional offset for antenna switching is configured using DFECTRL2.TSWITCHOFFSET. Similarly, the additional offset for antenna sampling is configured using DFECTRL2.TSAMPLEOFFSET.

6.12.12.5 Receive- and transmit sequences

The addition of the CTE to the transmitted packet is illustrated in the following figure.

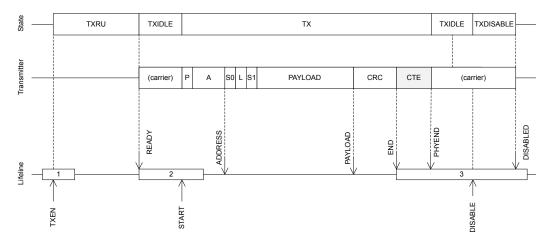


Figure 65: Transmit sequence with DFE

The prescence of CTE within a received packet is signalled by the CTEPRESENT event illustrated in the figure below.

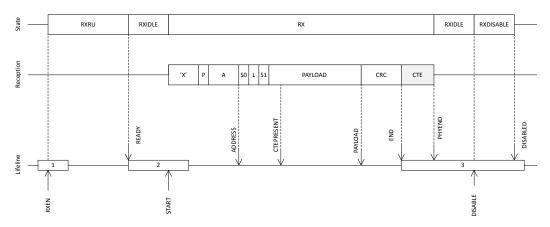


Figure 66: Receive sequence with DFE

6.12.12.6 Antenna switching

The RADIO can control up to 8 GPIO pins in order to control external antenna switches used in direction finding.

Pin configuration

The eight antenna selection signals are mapped to physical pins according to the pin numbers specified in the PSEL.DFEGPIO[n] registers. Only pins that have the PSEL.DFEGPIO[n].CONNECTED field set to *Connected* will be controlled by the RADIO. Pins that are *Disconnected* will be controlled by GPIO.

During transmission in AoD TX mode or reception in AoA RX mode, the RADIO automatically acquires the pins as needed. At times when the RADIO does not use the pin, the pin is released to its default state and controlled by the GPIO configuration. Thus, the pin must be configured using the GPIO peripheral.

Pin acquired by RADIO	Direction	Value	Comment
Yes	Output	Specified in SWITCHPATTERN	Pin acquired by RADIO, and in use for DFE.
No	Specified by GPIO	Specified by GPIO	DFE not in progress. Pin has not been acquired by RADIO, but is available for
			DFE use.

Table 57: Pin configuration matrix for a connected and enabled pin [n]

Switch pattern configuration

The values of the GPIOs while switching during the CTE are configured by writing successively to the SWITCHPATTERN register. The first write to SWITCHPATTERN is the GPIO pattern applied from the call of TASKS_TXEN or TASKS_RXEN until the first antenna switch is triggered. The second write sets the pattern for the reference period and is applied at the start of the guard period. The following writes set the pattern for the remaining switch slots and are applied at the start of each switch slot. If writing beyond the total number of antenna slots, the pattern will wrap to SWITCHPATTERN[2] and start over again. During operation, when the end of the SWITCHPATTERN buffer is reached, the RADIO cycles back to SWITCHPATTERN[2]. At the end of the AoA/AoD procedure, SWITCHPATTERN[0] is applied to DFECTRL1.TSWITCHSPACING after the previous antenna switch. The SWITCHPATTERN buffer can be erased/cleared using CLEARPATTERN.

A minimum number of three patterns must be written to the SWITCHPATTERN register.

If CTEINLINECONF.CTEINLINECTRLEN is not set, then the antenna switch spacing is determined by DFECTRL1.TSWITCHSPACING (otherwise described by Switching and sampling spacing based on CTEType on page 176). DFECTRL2.TSWITCHOFFSET determines the position of the first switch compared to the configurable start of CTE (see DFECTRL1.DFEINEXTENSION).

6.12.12.7 IQ sampling

The RADIO uses DMA to write IQ samples recorded during the CTE to RAM. Alternatively, the magnitude and phase of the samples can be recorded using the DFECTRL1.SAMPLETYPE field. The samples are written to the location in RAM specified by DFEPACKET.PTR. The maximum number of samples to transfer are specified by DFEPACKET.MAXCNT and the number of samples transferred are given in DFEPACKET.AMOUNT. The IQ samples are recorded with respect to the RX carrier frequency. The format of the samples is provided in the following table.

SAMPLETYPE	Field	Bits	Description
0: I_Q (default)	Q	31:16	12 bits signed, sign extended to 16 bits
	1	15:0	
1: MagPhase	reserved	31:29	Always zero
	magnitude	28:16	13 bits unsigned. Equals 1.646756*sqrt(I^2+Q^2)
	phase	15:0	9 bits signed, sign extended to 16 bits. Equals 64*atan2(Q, I) in the range [-201,201]

Table 58: Format of samples

Oversampling is configured separately for the reference period and for the time after the reference period. During the reference period, the sample spacing is determined by DFECTRL1.TSAMPLESPACINGREF.

DFECTRL2.TSAMPLEOFFSET determines the position of the first sample relative to the end of the last bit of the CRC.

For the time after the reference period, if CTEINLINECONF.CTEINLINECTRLEN is disabled, the sample spacing is set in DFECTRL1.TSAMPLESPACING. However, when CTEINLINECONF.CTEINLINECTRLEN is enabled, the sample spacing are determined by two different registers, depending on whether the device is in AoA or AoD RX-mode, as follows.

For AoD RX mode, the sample spacing after the reference period is determined by the CTEType in the packet, as listed in the table below.

NORDIC SEMICONDUCTOR

СТЕТуре	Sample spacing
AoD 1 µs slots	CTEINLINECONF.CTEINLINERXMODE1US
AoD 2 μs slots	CTEINLINECONF.CTEINLINERXMODE2US
Other	DFECTRL1.TSAMPLESPACING

Table 59: Sample spacing when CTEINLINECONF.CTEINLINECTRLEN is set and the device is in AoD RX mode

For AoA RX mode, the sample spacing after the reference period is determined by DFECTRL1.TSWITCHSPACING, as listed in the table below.

DFECTRL1.TSWITCHSPACING	Sample spacing
2 μs	CTEINLINECONF.CTEINLINERXMODE1US
4 μs	CTEINLINECONF.CTEINLINERXMODE2US
Other	DFECTRL1.TSAMPLESPACING

Table 60: Sample spacing when CTEINLINECONF.CTEINLINECTRLEN is set and the device is in AoA RX mode

For the reference- and switching periods, DFECTRL1.TSAMPLESPACINGREF and DFECTRL1.TSAMPLESPACING can be used to achieve oversampling.

6.12.13 IEEE 802.15.4 operation

With the MODE=leee802154_250kbit the RADIO will comply with the IEEE 802.15.4-2006 standard implementing its 250 kbps, 2450 MHz, O-QPSK PHY.

The IEEE 802.15.4 standard differs from Nordic's proprietary and *Bluetooth*[®] low energy modes. Notable differences include modulation scheme, channel structure, packet structure, security, and medium access control.

The main features of the IEEE 802.15.4 mode are:

- Ultra-low power 250 kbps, 2450 MHz, IEEE 802.15.4-2006 compliant link
- Clear channel assessment
- Energy detection scan
- · CRC generation

6.12.13.1 Packet structure

The IEEE 802.15.4 standard defines an on-the-air frame/packet that is different from what is used in BLE mode.

The following figure provides an overview of the physical frame structure and its timing.

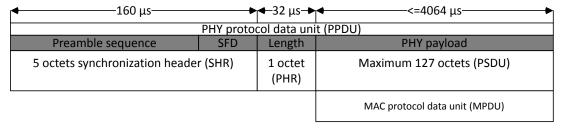


Figure 67: IEEE 802.15.4 frame format (PPDU)

The standard uses the term *octet* for an 8-bit storage unit within the PPDU. For timing, the value *symbol* is used, and it has a duration of $16 \mu s$.

The total usable payload (PSDU) is 127 octets, but when CRC is in use, this is reduced to 125 octets of usable payload.

The preamble sequence consists of four octets that are all zero, and are used for synchronizing the RADIO's receiver. Following the preamble is the single octet *start of frame delimiter (SFD)*, with a fixed value of 0xA7. An alternate SFD can be programmed through the SFD register, providing an initial level of frame filtering for those who choose non-standard compliance. It is a valuable feature when operating in a congested or private network. The preamble sequence and the SFD are generated by the RADIO, and are not programmed by the user into the frame buffer.

Following the five octet *synchronization header (SHR)* is the single octet *phy header (PHR)*. The least significant seven bits of PHR denote the frame length of the following PSDU. The most significant bit is reserved and is set to zero for frames that are standard compliant. The RADIO reports all eight bits which can be used to carry additional information. The PHR is the first byte written to the frame data memory pointed to by PACKETPTR. Frames with zero length are discarded, and the FRAMESTART event is not generated in this case.

The next N octets carry the data of the PHY packet, where N equals the value of the PHR. For an implementation also using the IEEE 802.15.4 MAC layer, the PHY data is a MAC frame of N-2 octets, since two octets occupy a CRC field.

As illustrated in the figure below, an IEEE 802.15.4 MAC layer frame always consists of

- A header:
 - The frame control field (FCF)
 - The sequence number
 - Addressing fields
- A payload
- The 16-bit frame control sequence (FCS)

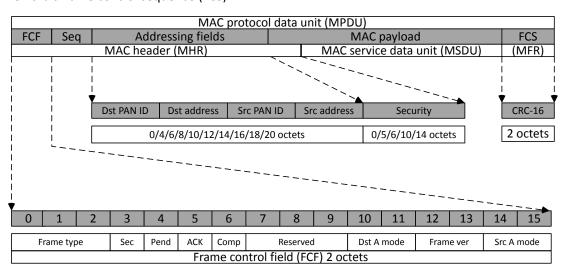


Figure 68: IEEE 802.15.4 frame format (MPDU)

The two FCF octets contain information about the frame type, addressing, and other control flags. This field is decoded when using the assisted operating modes offered by the RADIO.

The sequence number is a single octet in size and is unique for a frame. It is used in the associated acknowledgement frame sent upon successful frame reception.

The addressing field can be zero (acknowledgement frame) or up to 20 octets in size. The field is used to direct packets to the correct recipient and denote its origin. IEEE 802.15.4 bases its addressing on networks being organized in PANs with 16-bit identifier and nodes having a 16-bit or 64-bit address. In the assisted receive mode, these parameters are analyzed for address matching and acknowledgement.

The MAC payload carries the data of the next higher layer, or in the case of a MAC command frame, information used by the MAC layer itself.

The two last octets contain the 16-bit ITU-T CRC. The FCS is calculated over the MAC header (MHR) and MAC payload (MSDU) parts of the frame. This field is calculated automatically when sending a frame, or indicated in the CRCSTATUS register when a frame is received. If configured, this feature is taken care of autonomously by the CRC module.

6.12.13.2 Operating frequencies

The IEEE 802.15.4 standard defines 16 channels, 11 - 26, of 5 MHz each, in the 2450 MHz frequency band.

To choose the correct channel center frequency, the FREQUENCY register must be programmed according to the table below.

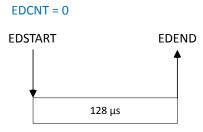
IEEE 802.15.4 channel	Center frequency (MHz)	FREQUENCY setting
Channel 11	2405	5
Channel 12	2410	10
Channel 13	2415	15
Channel 14	2420	20
Channel 15	2425	25
Channel 16	2430	30
Channel 17	2435	35
Channel 18	2440	40
Channel 19	2445	45
Channel 20	2450	50
Channel 21	2455	55
Channel 22	2460	60
Channel 23	2465	65
Channel 24	2470	70
Channel 25	2475	75
Channel 26	2480	80

Table 61: IEEE 802.15.4 center frequency definition

6.12.13.3 Energy detection (ED)

As required by the IEEE 802.15.4 standard, it must be possible to sample the received signal power within the bandwidth of a channel, for the purpose of determining presence of activity.

To prevent the channel signal from being decoded, the shortcut between the READY event and the START task should be disabled before putting the RADIO in receive mode. The energy detection (ED) measurement time, where RSSI samples are averaged, is 8 symbol periods, corresponding to 128 μ s. The standard further specifies the measurement to be a number between 0 and 255, where 0 shall indicate received power less than 10 dB above the selected receiver sensitivity. The power range of the ED values must be at least a 40 dB linear mapping with accuracy of \pm 6 dB. See section 6.9.7 Receiver ED in the IEEE 802.15.4 standard for further details.


The following example shows how to perform a single energy detection measurement and convert to IEEE 802.15.4 scale.

#define ED_RSSISCALE 4 // From electrical specifications uint8_t sample_ed(void) { int val; NRF_RADIO->TASKS_EDSTART = 1; // Start while (NRF_RADIO->EVENTS_EDEND != 1) { // CPU can sleep here or do something else // Use of interrupts are encouraged } val = NRF_RADIO->EDSAMPLE; // Read level return (uint8_t) (val>63 ? 255 : val*ED_RSSISCALE); // Convert to IEEE 802.15.4 scale }

For scaling between hardware value and dBm, see equation Conversion between hardware value and dBm on page 184.

The mlme-scan.req primitive of the MAC layer uses the ED measurement to detect channels where there might be wireless activity. To assist this primitive, a tailored mode of operation is available where the ED measurement runs for a defined number of iterations keeping track of the maximum ED level. This is enganged by writing the EDCNT register to a value different from 0, where it will run the specified number of iterations and report the maximum energy measurement in the EDSAMPLE register. The scan is started with EDSTART task and its end indicated with the EDEND event. This significantly reduces the interrupt frequency and therefore power consumption. The following figure shows how the ED measurement will operate depending on the EDCNT register.

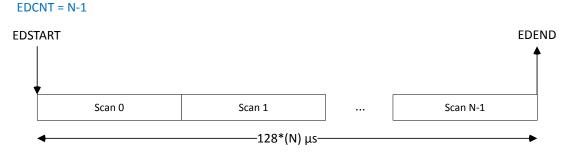


Figure 69: Energy detection measurement examples

The scan is stopped by writing the EDSTOP task. It will be followed by the EDSTOPPED event when the module has terminated.

6.12.13.4 Clear channel assessment (CCA)

IEEE 802.15.4 implements a listen-before-talk channel access method to avoid collisions when transmitting, known as *carrier sense multiple access with collision avoidance (CSMA-CA)*. The key part of this is measuring if the wireless medium is busy or not.

The following clear channel assesment modes are supported:

- CCA Mode 1 (energy above threshold): The medium is reported busy upon detecting any energy above the ED threshold.
- *CCA Mode 2* (carrier sense only): The medium is reported busy upon detection of a signal compliant with the IEEE 802.15.4 standard with the same modulation and spreading characteristics.
- *CCA Mode 3* (carrier sense with energy above threshold): The medium is reported busy using a logical combination (AND/OR) between the results from CCA Mode 1 and CCA Mode 2.

The clear channel assessment should survey a period equal to 8 symbols or 128 µs.

The RADIO must be in receive mode and be able to receive correct packets when performing the CCA. The shortcut between READY and START must be disabled if baseband processing is not to be performed while the measurement is running.

CCA Mode 1

CCA Mode 1 is enabled by first configuring the field CCACTRL.CCAMODE=EdMode and writing the CCACTRL.CCAEDTHRES field to a chosen value. Once the CCASTART task is written, the RADIO will perform a ED measurement for 8 symbols and compare the measured level with that found in the CCACTRL.CCAEDTHRES field. If the measured value is higher than or equal to this threshold, the CCABUSY event is generated. If the measured level is less than the threshold, the CCAIDLE event is generated.

CCA Mode 2

CCA Mode 2 is enabled by configuring CCACTRL.CCAMODE=CarrierMode. The RADIO will sample to see if a valid SFD is found during the 8 symbols. If a valid SFD is detected, the CCABUSY event is generated and the device should not send any data. The CCABUSY event is also generated if the scan was performed during an ongoing frame reception. In the case where the measurement period completes with no SFD detection, the CCAIDLE event is generated. With CCACTRL.CCACORRCNT not being zero, the algorithm will look at the correlator output in addition to the SFD detection signal. If a SFD is reported during the scan period, it will terminate immidiately indicating busy medium. Similarly, if the number of peaks above CCACTRL.CCACORRTHRES crosses the CCACTRL.CCACORRCNT, the CCACTRL.CCABUSY event is generated. If less than CCACORRCOUNT crossings are found and no SFD is reported, the CCAIDLE event will be generated and the device can send data.

CCA Mode 3

CCA Mode 3 is enabled by configuring CCACTRL.CCAMODE=CarrierAndEdMode or CCACTRL.CCAMODE=CarrierOrEdMode, performing the required logical combination of the result from CCA Mode 1 and 2. The CCABUSY or CCAIDLE events are generated by ANDing or ORing the energy above threshold and carrier detection scans.

Shortcuts

An ongoing CCA can always be stopped by issuing the CCASTOP task. This will trigger the associated CCASTOPPED event.

For CCA mode automation, a number of shortcuts are available.

 To automatically switch between RX (when performing the CCA) and to TX where the packet is sent, the shortcut between CCAIDLE and TXEN, in conjunction with the short between CCAIDLE and STOP muse be used.

- To automatically disable the RADIO whenever the CCA reports a busy medium, the shortcut between CCABUSY and DISABLE can be used.
- To immediately start a CCA after ramping up into RX mode, the shortcut between RXREADY and CCASTART can be used.

Conversion

The conversion from a CCAEDTHRES, CCA, or EDLEVEL value to dBm can be done with the following equation, where VAL_{HARDWARE} is the hardware-reported values, being either CCAEDTHRES, CCA or EDLEVEL, and constants ED RSSISCALE and ED RSSIOFFS are from electrical specifications.

```
P_{RF}[dBm] = ED_RSSIOFFS + ED_RSSISCALE \times VAL_{HARDWARE}
```

Figure 70: Conversion between hardware value and dBm

6.12.13.5 Cyclic redundancy check (CRC)

IEEE 802.15.4 uses a 16-bit ITU-T cyclic redundancy check (CRC) calculated over the MAC header (MHR) and MAC service data unit (MSDU).

The standard defines the following generator polynomial:

$$G(x) = x^{16} + x^{12} + x^5 + 1$$

In receive mode the RADIO will trigger the CRC module when the first octet after the frame length (PHR) is received. The CRC will then update on each consecutive octet received. When a complete frame is received the CRCSTATUS register will be updated accordingly and the CRCOK or CRCERROR events generated. When the CRC module is enabled it will not write the two last octets (CRC) to the frame Data RAM. When transmitting, the CRC will be computed on the fly, starting with the first octet after PHR, and inserted as the two last octets in the frame. The EasyDMA will fetch frame length minus 2 octets from RAM and insert the CRC octets insitu.

Below is a code snippet for configuring the CRC module for correct operation when in IEEE 802.15.4 mode. The CRCCNF is written to 16-bit CRC and the CRCPOLY is written to 0x11021. The start value used by IEEE 802.15.4 is zero and CRCINIT is configured to reflect this.

The ENDIANESS subregister must be set to little-endian since the FCS field is transmitted from left bit to right.

6.12.13.6 Transmit sequence

The transmission is started by first putting the RADIO in receive mode and triggering the RXEN task.

An outline of the IEEE 802.15.4 transmission is illustrated in the figure below.

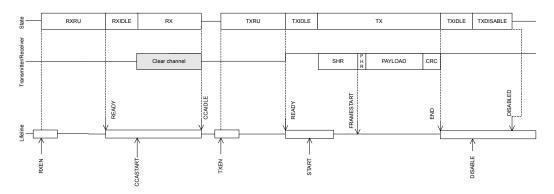


Figure 71: IEEE 802.15.4 transmit sequence

The receiver will ramp up and enter the RXIDLE state where the READY event is generated. Upon receiving the ready event, the CCA is started by triggering the CCASTART task. The chosen mode of assessment (CCACTRL.CCAMODE register) will be performed and signal the CCAIDLE or CCABUSY event 128 µs later. If the CCABUSY event is received, the RADIO will have to retry the CCA after a specific back-off period. This is outlined in the *IEEE 802.15.4 standard, Figure 69 in section 7.5.1.4 The CSMA-CA algorithm*.

If the CCAIDLE event is generated, a write to the TXEN task register enters the RADIO in TXRU state. The READY event will be generated when the RADIO is in TXIDLE state and ready to transmit. With the PACKETPTR pointing to the length (PHR) field of the frame, the START task can be written. The RADIO will send the four octet preamble sequence followed by the start of frame delimiter (SFD register). The first byte read from the Data RAM is the length field (PHR) followed by the transmission of the number of bytes indicated as the frame length. If the CRC module is configured it will run for PHR-2 octets. The last two octets will be substituted with the results from running the CRC. The necessary CRC parameters are sampled on the START task. The FCS field of the frame is little endian.

In addition to the already available shortcuts, one is provided between READY event and CCASTART task so that a CCA can automatically start when the receiver is ready. A second shortcut has been added between CCAIDLE event and the TXEN task, so that upon detecting a clear channel the RADIO can immediately enter transmit mode.

6.12.13.7 Receive sequence

The reception is started by first putting the RADIO in receive mode. After writing to the RXEN task, the RADIO will start ramping up and enter the RXRU state.

When the READY event is generated, the RADIO enters the RXIDLE mode. For the baseband processing to be enabled, the START task must be written. An outline of the IEEE 802.15.4 reception can be found in the figure below.

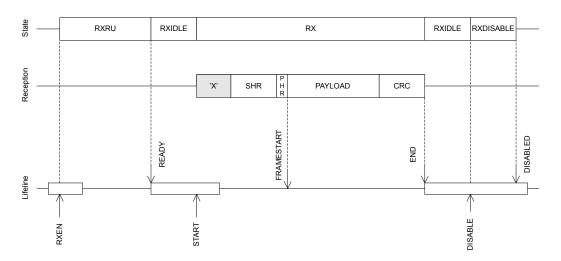


Figure 72: IEEE 802.15.4 receive sequence

When a valid SHR is received the RADIO will start storing future octets (starting with PHR) to the data memory pointed to by PACKETPTR. After the SFD octet is received the FRAMESTART event is generated. If the CRC module is enabled it will start updating with the second byte received (first byte in payload) and run for the full frame length. The two last bytes in the frame are not written to RAM when CRC is configured. However, if the result of the CRC after running the full frame is zero, the CRCOK event will be generated. The END event is generated when the last octet has been received and is available in data memory.

When a packet is received a link quality indicator (LQI) is also generated and appended immediately after the last received octet. When using an IEEE 802.15.4 compliant frame, this will be just after the MSDU since the FCS is not reported. In the case of a non-complient frame it will be appended after the full frame. The LQI reported by hardware must be converted to IEEE 802.15.4 range by an 8-bit saturating multiplication by 4, as shown in IEEE 802.15.4 ED measurement example on page 182. The LQI is only valid for frames equal to or longer than three octets. When receiving a frame the RSSI (reported as negative dB) will be measured at three points during the reception. These three values will be sorted and the middle one selected (median 3) to be remapped within the LQI range. The following figure illustrates the LQI measurement and how the data is arranged in data memory.

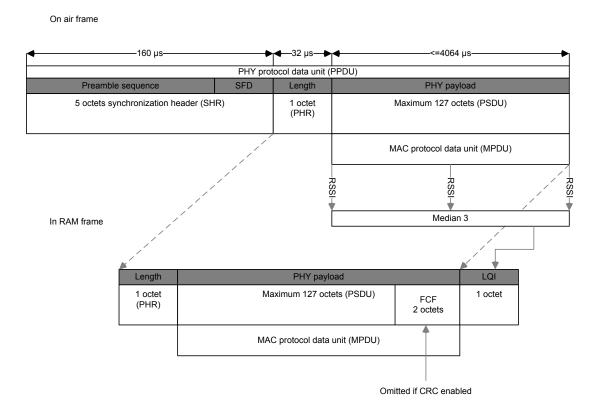


Figure 73: IEEE 802.15.4 frame in data memory

A shortcut has been added between the FRAMESTART event and the BCSTART task. This can be used to trigger a BCMATCH event after N bits, such as when inspecting the MAC addressing fields.

6.12.13.8 Interframe spacing (IFS)

The IEEE 802.15.4 standard defines a specific time that is alotted for the MAC sublayer to process received data. Interframe spacing (IFS) is used to prevent that two frames are transmitted too close together. If the transmission is requesting an acknowledgement, the space before the second frame shall be at least one IFS period.

The IFS is determined to be one of the following:

- IFS equals macMinSIFSPeriod (12 symbols) if the MPDU is less than or equal to aMaxSIFSFrameSize (18 octets) octets
- IFS equals macMinLIFSPeriod (40 symbols) if the MPDU is larger than aMaxSIFSFrameSize

Using the efficient assisted modes in the RADIO, the TIFS will be programmed with the correct value based on the frame being transmitted. If the assisted modes are not being used the user must update the TIFS register manually. The figure below provides details on what IFS period is valid in both acknowledged and unacknowledged transmissions.

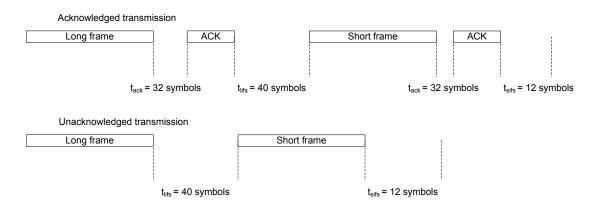


Figure 74: Interframe spacing examples

6.12.14 EasyDMA

The RADIO uses EasyDMA to read and write packets to RAM without CPU involvement.

As illustrated in RADIO block diagram on page 166, the RADIO's EasyDMA utilizes the same PACKETPTR for receiving and transmitting packets. This pointer should be reconfigured by the CPU each time before RADIO is started by the START task. The PACKETPTR register is double-buffered, meaning that it can be updated and prepared for the next transmission.

The END event indicates that the last bit has been processed by the RADIO. The DISABLED event is issued to acknowledge that a DISABLE task is done.

The structure of a packet is described in detail in Packet configuration on page 166. The data that is stored in Data RAM and transported by EasyDMA consists of the following fields:

- S0
- LENGTH
- S1
- PAYLOAD

In addition, a static add-on is sent immediately after the payload.

The size of each of the above fields in the frame is configurable (see Packet configuration on page 166), and the space occupied in RAM depends on these settings. The size of the field can be zero, as long as the resulting frame complies with the chosen RF protocol.

All fields are extended in size to align with a byte boundary in RAM. For instance, a 3-bit long field on air will occupy 1 byte in RAM while a 9-bit long field will be extended to 2 bytes.

The packet's elements can be configured as follows:

- CI, TERM1, and TERM2 fields are only present in Bluetooth[®] Low Energy Long Range mode
- SO is configured through the PCNFO.SOLEN field
- LENGTH is configured through the PCNFO.LFLEN field
- S1 is configured through the PCNFO.S1LEN field
- Payload size is configured through the value in RAM corresponding to the LENGTH field
- Static add-on size is configured through the PCNF1.STATLEN field

The PCNF1.MAXLEN field configures the maximum packet payload plus add-on size in number of bytes that can be transmitted or received by the RADIO. This feature can be used to ensure that the RADIO does not overwrite, or read beyond, the RAM assigned to the packet payload. This means that if the LENGTH field of the packet payload exceedes PCNF1.STATLEN, and the LENGTH field in the packet specifies a packet larger than configured in PCNF1.MAXLEN, the payload will be truncated to the length specified in PCNF1.MAXLEN.

Note: The PCNF1.MAXLEN field includes the payload and the add-on, but excludes the size occupied by the SO, LENGTH, and S1 fields. This has to be taken into account when allocating RAM.

If the payload and add-on length is specified larger than PCNF1.MAXLEN, the RADIO will still transmit or receive in the same way as before, except the payload is now truncated to PCNF1.MAXLEN. The packet's LENGTH field will not be altered when the payload is truncated. The RADIO will calculate CRC as if the packet length is equal to PCNF1.MAXLEN.

Note: If PACKETPTR is not pointing to the Data RAM region, an EasyDMA transfer may result in a HardFault or RAM corruption. See Memory on page 17 for more information about the different memory regions.

The END event indicates that the last bit has been processed by the RADIO. The DISABLED event is issued to acknowledge that an DISABLE task is done.

6.12.15 Registers

Base address	Peripheral	Instance	Description	Configuration	
0x40001000	RADIO	RADIO	2.4 GHz radio		

Table 62: Instances

Register	Offset	Description
TASKS_TXEN	0x000	Enable RADIO in TX mode
TASKS_RXEN	0x004	Enable RADIO in RX mode
TASKS_START	0x008	Start RADIO
TASKS_STOP	0x00C	Stop RADIO
TASKS_DISABLE	0x010	Disable RADIO
TASKS_RSSISTART	0x014	Start the RSSI and take one single sample of the receive signal strength
TASKS_RSSISTOP	0x018	Stop the RSSI measurement
TASKS_BCSTART	0x01C	Start the bit counter
TASKS_BCSTOP	0x020	Stop the bit counter
TASKS_EDSTART	0x024	Start the energy detect measurement used in IEEE 802.15.4 mode
TASKS_EDSTOP	0x028	Stop the energy detect measurement
TASKS_CCASTART	0x02C	Start the clear channel assessment used in IEEE 802.15.4 mode
TASKS_CCASTOP	0x030	Stop the clear channel assessment
EVENTS_READY	0x100	RADIO has ramped up and is ready to be started
EVENTS_ADDRESS	0x104	Address sent or received
EVENTS_PAYLOAD	0x108	Packet payload sent or received
EVENTS_END	0x10C	Packet sent or received
EVENTS_DISABLED	0x110	RADIO has been disabled
EVENTS_DEVMATCH	0x114	A device address match occurred on the last received packet
EVENTS_DEVMISS	0x118	No device address match occurred on the last received packet
EVENTS_RSSIEND	0x11C	Sampling of receive signal strength complete
EVENTS_BCMATCH	0x128	Bit counter reached bit count value
EVENTS_CRCOK	0x130	Packet received with CRC ok
EVENTS_CRCERROR	0x134	Packet received with CRC error
EVENTS_FRAMESTART	0x138	IEEE 802.15.4 length field received
EVENTS_EDEND	0x13C	Sampling of energy detection complete. A new ED sample is ready for readout from the
		RADIO.EDSAMPLE register
EVENTS_EDSTOPPED	0x140	The sampling of energy detection has stopped
EVENTS_CCAIDLE	0x144	Wireless medium in idle - clear to send
EVENTS_CCABUSY	0x148	Wireless medium busy - do not send

Register	Offset	Description
EVENTS_CCASTOPPED	0x14C	The CCA has stopped
EVENTS_RATEBOOST	0x150	Ble_LR CI field received, receive mode is changed from Ble_LR125Kbit to Ble_LR500Kbit.
EVENTS_TXREADY	0x154	RADIO has ramped up and is ready to be started TX path
EVENTS_RXREADY	0x158	RADIO has ramped up and is ready to be started RX path
EVENTS_MHRMATCH	0x15C	MAC header match found
EVENTS_SYNC	0x168	Preamble indicator
EVENTS_PHYEND	0x16C	Generated when last bit is sent on air, or received from air
EVENTS_CTEPRESENT	0x170	CTE is present (early warning right after receiving CTEInfo byte)
SHORTS	0x200	Shortcuts between local events and tasks
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt
CRCSTATUS	0x400	CRC status
RXMATCH	0x408	Received address
RXCRC	0x40C	CRC field of previously received packet
DAI	0x410	Device address match index
PDUSTAT	0x414	Payload status
CTESTATUS	0x44C	CTEInfo parsed from received packet
DFESTATUS	0x458	DFE status information
PACKETPTR	0x504	Packet pointer
FREQUENCY	0x508	Frequency
TXPOWER	0x50C	Output power
MODE	0x510	Data rate and modulation
PCNF0	0x514	Packet configuration register 0
PCNF1	0x518	Packet configuration register 1
BASE0	0x51C	Base address 0
BASE1	0x520	Base address 1
PREFIXO	0x524	Prefixes bytes for logical addresses 0-3
PREFIX1	0x528	Prefixes bytes for logical addresses 4-7
TXADDRESS	0x52C	Transmit address select
RXADDRESSES	0x530	Receive address select
CRCCNF	0x534	CRC configuration
CRCPOLY	0x538	CRC polynomial
CRCINIT	0x53C	CRC initial value
TIFS	0x544	Interframe spacing in µs
RSSISAMPLE	0x548	RSSI sample
STATE	0x550	Current radio state
DATAWHITEIV	0x554	Data whitening initial value
BCC	0x560	Bit counter compare
DAB[n]	0x600	Device address base segment n
DAP[n]	0x620	Device address prefix n
DACNF	0x640	Device address match configuration
MHRMATCHCONF	0x644	Search pattern configuration
MHRMATCHMAS	0x648	Pattern mask
MODECNF0	0x650	Radio mode configuration register 0
SFD	0x660	IEEE 802.15.4 start of frame delimiter
EDCNT	0x664	IEEE 802.15.4 energy detect loop count
EDSAMPLE	0x668	IEEE 802.15.4 energy detect loop count
CCACTRL	0x66C	IEEE 802.15.4 clear channel assessment control
DFEMODE	0x900	Whether to use Angle-of-Arrival (AOA) or Angle-of-Departure (AOD)
CTEINLINECONF	0x900 0x904	Configuration for CTE inline mode
DFECTRL1	0x904 0x910	Various configuration for Direction finding
DFECTRL2	0x910 0x914	
		Start offset for Direction finding CRIO patterns to be used for each automa.
SWITCHPATTERN	0x928	GPIO patterns to be used for each antenna

Register	Offset	Description
CLEARPATTERN	0x92C	Clear the GPIO pattern array for antenna control
PSEL.DFEGPIO[0]	0x930	Pin select for DFE pin 0
PSEL.DFEGPIO[1]	0x934	Pin select for DFE pin 1
PSEL.DFEGPIO[2]	0x938	Pin select for DFE pin 2
PSEL.DFEGPIO[3]	0x93C	Pin select for DFE pin 3
PSEL.DFEGPIO[4]	0x940	Pin select for DFE pin 4
PSEL.DFEGPIO[5]	0x944	Pin select for DFE pin 5
PSEL.DFEGPIO[6]	0x948	Pin select for DFE pin 6
PSEL.DFEGPIO[7]	0x94C	Pin select for DFE pin 7
DFEPACKET.PTR	0x950	Data pointer
DFEPACKET.MAXCNT	0x954	Maximum number of buffer words to transfer
DFEPACKET.AMOUNT	0x958	Number of samples transferred in the last transaction
POWER	0xFFC	Peripheral power control

Table 63: Register overview

6.12.15.1 TASKS_TXEN

Address offset: 0x000 Enable RADIO in TX mode

Bit n	umber		31 30 29 28 27 2	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	et 0x00000000		0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	W TASKS_TXEN			Enable RADIO in TX mode
		Trigger	1	Trigger task

6.12.15.2 TASKS_RXEN

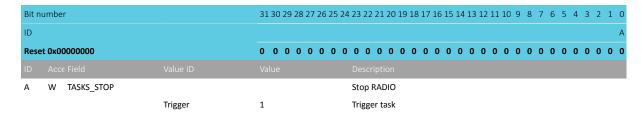
Address offset: 0x004
Enable RADIO in RX mode

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	t 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	W TASKS_RXEN			Enable RADIO in RX mode
		Trigger	1	Trigger task

6.12.15.3 TASKS_START

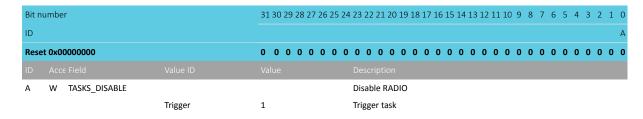
Address offset: 0x008

Start RADIO


Bit r	number		31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	et 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	W TASKS_START			Start RADIO
		Trigger	1	Trigger task

6.12.15.4 TASKS_STOP

Address offset: 0x00C


Stop RADIO

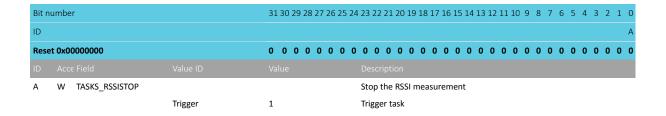
6.12.15.5 TASKS DISABLE

Address offset: 0x010

Disable RADIO

6.12.15.6 TASKS_RSSISTART

Address offset: 0x014

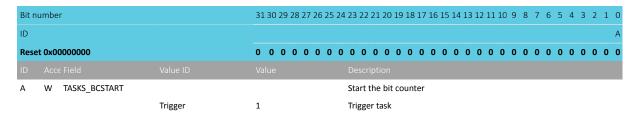

Start the RSSI and take one single sample of the receive signal strength

Bit number		31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			A
Reset 0x00000000	1	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A W TASKS_	RSSISTART		Start the RSSI and take one single sample of the receive
			signal strength
	Trigger	1	Trigger task

6.12.15.7 TASKS_RSSISTOP

Address offset: 0x018

Stop the RSSI measurement



6.12.15.8 TASKS_BCSTART

Address offset: 0x01C Start the bit counter

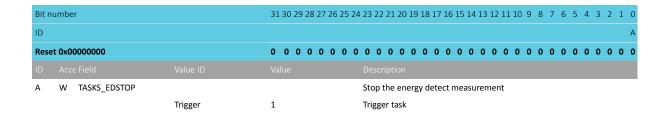
6.12.15.9 TASKS BCSTOP

Address offset: 0x020 Stop the bit counter

Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				Α
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	W TASKS_BCSTOP			Stop the bit counter
		Trigger	1	Trigger task

6.12.15.10 TASKS_EDSTART

Address offset: 0x024

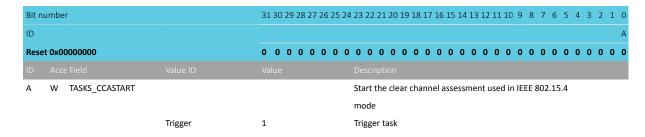

Start the energy detect measurement used in IEEE 802.15.4 mode

Bit number	31 30 29 28 27 26 25	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		А
Reset 0x00000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		Description
A W TASKS_EDSTART		Start the energy detect measurement used in IEEE 802.15.4
		mode
Trigger	1	Trigger task

6.12.15.11 TASKS_EDSTOP

Address offset: 0x028

Stop the energy detect measurement



6.12.15.12 TASKS_CCASTART

Address offset: 0x02C

Start the clear channel assessment used in IEEE 802.15.4 mode

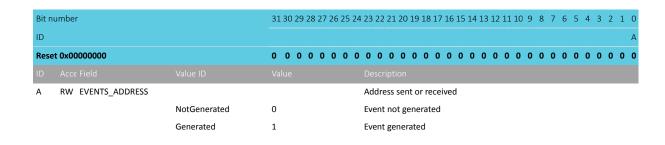
6.12.15.13 TASKS CCASTOP

Address offset: 0x030

Stop the clear channel assessment

Bit n	umber		31 30 29 28 27	7 26 25 24	23 22	21 20	19 18 1	7 16 1	5 14 :	13 1	2 11 1	10 9	8	7 6	5	4	3 2	1	0
ID																			Α
Rese	et 0x0000000		0 0 0 0 0	0 0 0	0 0	0 0	0 0 0	0 (0	0 (0 0	0 0	0 (0 0	0	0	0 0	0	0
ID																			
Α	W TASKS_CCA	ASTOP			Stop 1	the clea	ar chanı	nel ass	essm	ent									
		Trigger	1		Trigge	er task													

6.12.15.14 EVENTS READY

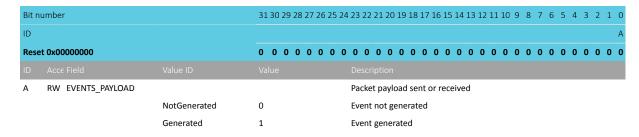

Address offset: 0x100

RADIO has ramped up and is ready to be started

Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	t 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW EVENTS_READY			RADIO has ramped up and is ready to be started
		NotGenerated	0	Event not generated
		Generated	1	Event generated

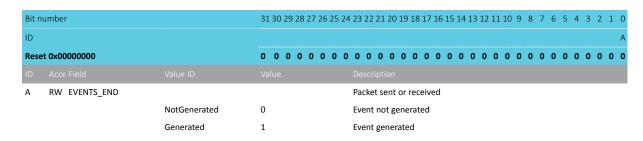
6.12.15.15 EVENTS_ADDRESS

Address offset: 0x104
Address sent or received



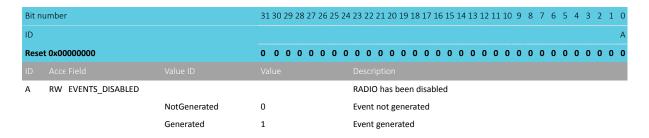
6.12.15.16 EVENTS_PAYLOAD

Address offset: 0x108


Packet payload sent or received

6.12.15.17 EVENTS END

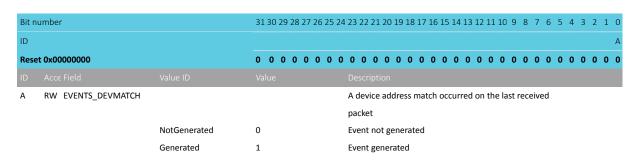
Address offset: 0x10C


Packet sent or received

6.12.15.18 EVENTS_DISABLED

Address offset: 0x110

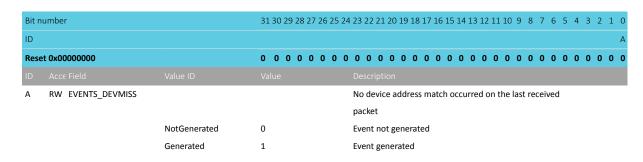
RADIO has been disabled



6.12.15.19 EVENTS DEVMATCH

Address offset: 0x114

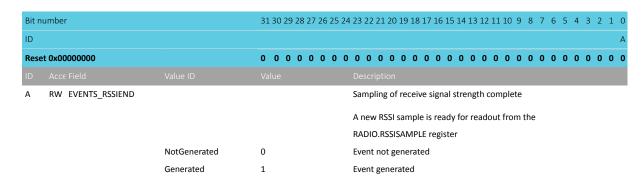
A device address match occurred on the last received packet



6.12.15.20 EVENTS DEVMISS

Address offset: 0x118

No device address match occurred on the last received packet



6.12.15.21 EVENTS_RSSIEND

Address offset: 0x11C

Sampling of receive signal strength complete

A new RSSI sample is ready for readout from the RADIO.RSSISAMPLE register

6.12.15.22 EVENTS BCMATCH

Address offset: 0x128

Bit counter reached bit count value

Bit counter value is specified in the RADIO.BCC register

Bit n	umber		31 30 29 2	28 27	26 2	25 2	4 23	3 22	21 2	20 1	.9 18	3 17	16	15 1	4 1	3 12	11 :	10 9	8	7	6	5	4	3 2	2 1	0
ID																										Α
Rese	t 0x00000000		0 0 0	0 0	0	0 0	0 0	0	0	0 (0 0	0	0	0 (0 0	0	0	0 0	0	0	0	0	0	0 () () 0
ID																										
Α	RW EVENTS_BCMATCH						Bi	t co	unte	er re	each	ed b	oit c	oun	t va	lue										
							Bi	t co	unte	er va	alue	is sp	oeci	fied	in t	he F	RADI	O.B	CC r	egis	ster					
		NotGenerated	0				Ev	ent	not	ger	nera	ted														
		Generated	1				Ev	ent	gen	era	ted															

6.12.15.23 EVENTS_CRCOK

Address offset: 0x130

Packet received with CRC ok

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	t 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW EVENTS_CRCOK			Packet received with CRC ok
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.12.15.24 EVENTS_CRCERROR

Address offset: 0x134

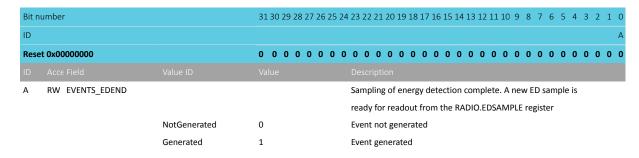
Packet received with CRC error

Bit r	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW EVENTS_CRCERROR			Packet received with CRC error
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.12.15.25 EVENTS_FRAMESTART

Address offset: 0x138

IEEE 802.15.4 length field received


Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW EVENTS_FRAMESTART			IEEE 802.15.4 length field received
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.12.15.26 EVENTS_EDEND

Address offset: 0x13C

Sampling of energy detection complete. A new ED sample is ready for readout from the RADIO.EDSAMPLE register

6.12.15.27 EVENTS_EDSTOPPED

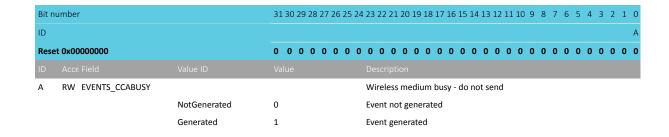
Address offset: 0x140

The sampling of energy detection has stopped

Bit n	umber		31	30	29 2	28 2	7 2	6 25	5 24	1 23	3 22	2 21	. 20	19	18 1	17 1	6 1	5 14	113	12	11	10 9	9 8	7	6	5	4	3	2	1 0
ID																														Α
Rese	et 0x00000000		0	0	0	0 (0 0	0	0	0	0	0	0	0	0	0 () (0	0	0	0	0 (0 0	0	0	0	0	0	0 (0 0
ID																														
Α	RW EVENTS_EDSTOPPED									Th	ne s	sam	plir	ng o	f en	erg	y de	etec	tior	n ha	s st	орр	ed							
		NotGenerated	0							Ev	/en	t no	ot ge	ene	rate	d														
		Generated	1							Ev	/en	t ge	ner	ate	d															

6.12.15.28 EVENTS_CCAIDLE

Address offset: 0x144

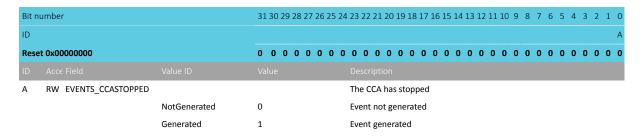

Wireless medium in idle - clear to send

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW EVENTS_CCAIDLE			Wireless medium in idle - clear to send
		NotGenerated	0	Event not generated
		Generated	1	Event generated

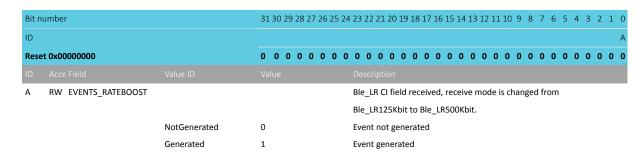
6.12.15.29 EVENTS_CCABUSY

Address offset: 0x148

Wireless medium busy - do not send

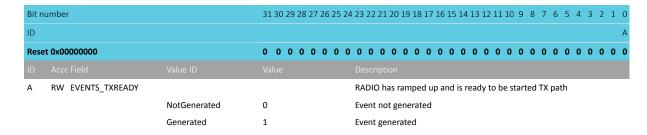


6.12.15.30 EVENTS_CCASTOPPED


Address offset: 0x14C
The CCA has stopped

6.12.15.31 EVENTS RATEBOOST

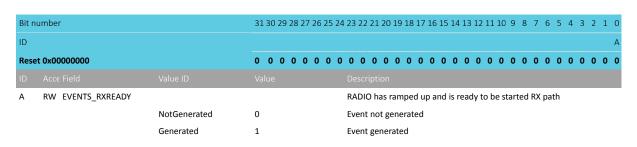
Address offset: 0x150


Ble_LR CI field received, receive mode is changed from Ble_LR125Kbit to Ble_LR500Kbit.

6.12.15.32 EVENTS_TXREADY

Address offset: 0x154

RADIO has ramped up and is ready to be started TX path



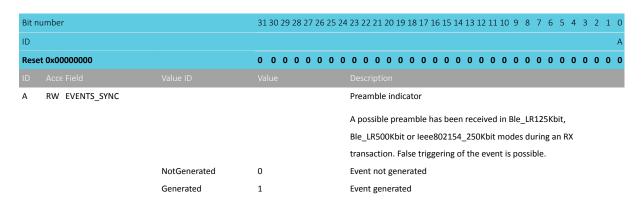
6.12.15.33 EVENTS RXREADY

Address offset: 0x158

RADIO has ramped up and is ready to be started RX path

6.12.15.34 EVENTS MHRMATCH

Address offset: 0x15C

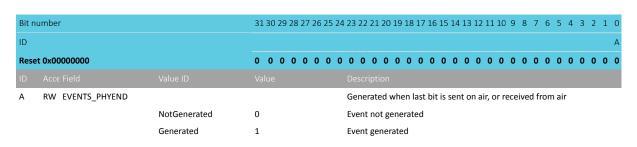

MAC header match found

Bit n	umber		31	30	29 2	8 27	7 26	25	24 2	23 2	22 2	21 2	0 1	9 18	17	16	15 :	14 1	3 12	2 11	10	9 8	7	6	5	4	3	2 :	0
ID																													Α
Rese	t 0x00000000		0	0	0	0 0	0	0	0	0	0 (0 (0 (0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0 (0
ID																													
Α	RW EVENTS_MHRMATCH								1	MA	C h	ead	ler ı	mate	ch f	oun	d												
		NotGenerated	0						E	ve	nt r	not	gen	erat	ted														
		Generated	1						E	ve	nt g	gene	erat	ed															

6.12.15.35 EVENTS_SYNC

Address offset: 0x168
Preamble indicator

A possible preamble has been received in Ble_LR125Kbit, Ble_LR500Kbit or leee802154_250Kbit modes during an RX transaction. False triggering of the event is possible.



6.12.15.36 EVENTS_PHYEND

Address offset: 0x16C

Generated when last bit is sent on air, or received from air

6.12.15.37 EVENTS_CTEPRESENT

Address offset: 0x170

CTE is present (early warning right after receiving CTEInfo byte)

Bit n	umber		31 30	0 29	28	27	26	25	24 2	23	22	21	20	19	18	17	16	15	14	13	12 :	11 1	0 9	8	7	6	5	4	3	2 1	1 0
ID																															Α
Rese	t 0x00000000		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0 (0 (0 0
ID																															
Α	RW EVENTS_CTEPRESENT								(CTE	E is	pr	ese	nt ((ea	rly	wa	rnir	ng r	igh	aft	ter i	ece	ivir	ıg C	TEI	nfo				
									-	byt	te)																				
		NotGenerated	0						-	Eve	ent	no	t ge	ene	rat	ed															
		Generated	1						-	Eve	ent	ge	ner	ate	d																

6.12.15.38 SHORTS

Address offset: 0x200

Shortcuts between local events and tasks

Bit r	umber		31 30 29 28 27 26 25	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				UTSRQPONMLK H GFEDCBA
Rese	et 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW READY_START			Shortcut between event READY and task START
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
В	RW END_DISABLE			Shortcut between event END and task DISABLE
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
С	RW DISABLED_TXEN			Shortcut between event DISABLED and task TXEN
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
D	RW DISABLED_RXEN			Shortcut between event DISABLED and task RXEN
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
E	RW ADDRESS_RSSISTART			Shortcut between event ADDRESS and task RSSISTART
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
F	RW END_START			Shortcut between event END and task START
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
G	RW ADDRESS_BCSTART			Shortcut between event ADDRESS and task BCSTART
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
Н	RW DISABLED_RSSISTOP			Shortcut between event DISABLED and task RSSISTOP

Bit n	number		31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				UTSRQPONMLK H GFEDCBA
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
K	RW RXREADY_CCASTART			Shortcut between event RXREADY and task CCASTART
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
L	RW CCAIDLE_TXEN			Shortcut between event CCAIDLE and task TXEN
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
М	RW CCABUSY_DISABLE			Shortcut between event CCABUSY and task DISABLE
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
N	RW FRAMESTART_BCSTAR	т		Shortcut between event FRAMESTART and task BCSTART
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
0	RW READY_EDSTART			Shortcut between event READY and task EDSTART
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
Р	RW EDEND_DISABLE			Shortcut between event EDEND and task DISABLE
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
Q	RW CCAIDLE_STOP			Shortcut between event CCAIDLE and task STOP
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
R	RW TXREADY_START			Shortcut between event TXREADY and task START
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
S	RW RXREADY_START			Shortcut between event RXREADY and task START
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
Т	RW PHYEND_DISABLE			Shortcut between event PHYEND and task DISABLE
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
U	RW PHYEND_START			Shortcut between event PHYEND and task START
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut

6.12.15.39 INTENSET

Address offset: 0x304

Enable interrupt

Bit n	umber		31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			a Z Y	V U T S R Q P O N M L K I H G F E D C B A
Rese	t 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW READY			Write '1' to enable interrupt for event READY
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

Bit n	umber		31 30 29 28 27 26 25 27	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID	imber		a Z Y	VUTSRQPONMLK I HGFEDCBA
	. 00000000			
	t 0x00000000			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID	Acce Field	Value ID	Value	Description
В	RW ADDRESS	C-+	4	Write '1' to enable interrupt for event ADDRESS
		Set	1	Enable Deads Disabled
		Disabled	0	Read: Disabled
_	RW PAYLOAD	Enabled	1	Read: Enabled
С	RW PAYLOAD	Cat	1	Write '1' to enable interrupt for event PAYLOAD
		Set Disabled	0	Enable Read: Disabled
		Enabled	1	Read: Enabled
D	RW END	Enabled	1	Write '1' to enable interrupt for event END
U	KW END	Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
E	RW DISABLED	Ellableu	1	Write '1' to enable interrupt for event DISABLED
_	NW DISABLED	Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled		Read: Enabled
F	RW DEVMATCH	Ellableu	1	Write '1' to enable interrupt for event DEVMATCH
г	NW DEVIVIATED	Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
G	RW DEVMISS	Lilabieu	1	Write '1' to enable interrupt for event DEVMISS
U	NW DEVIVISS	Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Н	RW RSSIEND	Lilableu	1	Write '1' to enable interrupt for event RSSIEND
	NW NOSIEND			white I to chable interrupt for event resizers
				A new RSSI sample is ready for readout from the
				RADIO.RSSISAMPLE register
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
I	RW BCMATCH			Write '1' to enable interrupt for event BCMATCH
				Bit counter value is specified in the RADIO.BCC register
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
K	RW CRCOK			Write '1' to enable interrupt for event CRCOK
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
L	RW CRCERROR			Write '1' to enable interrupt for event CRCERROR
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
М	RW FRAMESTART			Write '1' to enable interrupt for event FRAMESTART
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
N	RW EDEND			Write '1' to enable interrupt for event EDEND
		Set	1	Enable
		Disabled	0	Read: Disabled

Bit r	umber		31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			a Z Y	VUTSRQPONMLK I HGFEDCBA
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		Enabled	1	Read: Enabled
0	RW EDSTOPPED			Write '1' to enable interrupt for event EDSTOPPED
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Р	RW CCAIDLE			Write '1' to enable interrupt for event CCAIDLE
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Q	RW CCABUSY			Write '1' to enable interrupt for event CCABUSY
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
R	RW CCASTOPPED			Write '1' to enable interrupt for event CCASTOPPED
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
S	RW RATEBOOST			Write '1' to enable interrupt for event RATEBOOST
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Т	RW TXREADY			Write '1' to enable interrupt for event TXREADY
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
U	RW RXREADY			Write '1' to enable interrupt for event RXREADY
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
٧	RW MHRMATCH			Write '1' to enable interrupt for event MHRMATCH
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Υ	RW SYNC			Write '1' to enable interrupt for event SYNC
				A possible preamble has been received in Ble_LR125Kbit,
				Ble_LR500Kbit or leee802154_250Kbit modes during an RX
				transaction. False triggering of the event is possible.
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Z	RW PHYEND			Write '1' to enable interrupt for event PHYEND
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
а	RW CTEPRESENT			Write '1' to enable interrupt for event CTEPRESENT
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

6.12.15.40 INTENCLR

Address offset: 0x308

Disable interrupt

Bit n	umber		31 30 29 28 27 26 25 2	
ID			a Z Y	VUTSRQPONMLK I HGFEDCBA
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A	RW READY			Write '1' to disable interrupt for event READY
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
В	RW ADDRESS			Write '1' to disable interrupt for event ADDRESS
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
С	RW PAYLOAD			Write '1' to disable interrupt for event PAYLOAD
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
D	RW END			Write '1' to disable interrupt for event END
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
E	RW DISABLED	Liidaled	-	Write '1' to disable interrupt for event DISABLED
-	5.0/15225	Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
F	RW DEVMATCH	2.1.d.Z.icu	-	Write '1' to disable interrupt for event DEVMATCH
•	52	Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
G	RW DEVMISS	Liidaled	-	Write '1' to disable interrupt for event DEVMISS
Ū	52155	Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Н	RW RSSIEND	2.102.103	-	Write '1' to disable interrupt for event RSSIEND
••				
				A new RSSI sample is ready for readout from the
				RADIO.RSSISAMPLE register
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
I	RW BCMATCH			Write '1' to disable interrupt for event BCMATCH
				Bit counter value is specified in the RADIO.BCC register
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
K	RW CRCOK			Write '1' to disable interrupt for event CRCOK
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
L	RW CRCERROR			Write '1' to disable interrupt for event CRCERROR

Bit r	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 (
ID			a Z Y	VUTSRQPONMLK I HGFEDCBA
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
М	RW FRAMESTART			Write '1' to disable interrupt for event FRAMESTART
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
N	RW EDEND			Write '1' to disable interrupt for event EDEND
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
0	RW EDSTOPPED			Write '1' to disable interrupt for event EDSTOPPED
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Р	RW CCAIDLE			Write '1' to disable interrupt for event CCAIDLE
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Q	RW CCABUSY			Write '1' to disable interrupt for event CCABUSY
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
R	RW CCASTOPPED			Write '1' to disable interrupt for event CCASTOPPED
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
S	RW RATEBOOST			Write '1' to disable interrupt for event RATEBOOST
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Т	RW TXREADY			Write '1' to disable interrupt for event TXREADY
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
U	RW RXREADY			Write '1' to disable interrupt for event RXREADY
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
V	RW MHRMATCH			Write '1' to disable interrupt for event MHRMATCH
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Υ	RW SYNC			Write '1' to disable interrupt for event SYNC
				A possible preamble has been received in Ble_LR125Kbit,
				Ble_LR500Kbit or leee802154_250Kbit modes during an RX
				transaction. False triggering of the event is possible.
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

Rit n	umber		31 3	ود م	202	יר די	6 21	5 2/1	23	22.	21.2	o∩ 1	0 1	Q 1 ⁻	1 16	15	1/1	121	2 1	1 10	۵	Q	7	6	5	1	2 7	1	0
	unibei		21.2	0 25				3 24																					
ID					a :	Z Y			V	U	T	S I	R (Q P	0	N	M	L	K	- 1			Н	G	F	Е	D C	В	Α
Rese	et 0x00000000		0 (0	0 (0 0	0	0	0	0	0	0	0 (0	0	0	0	0	0 0	0	0	0	0	0	0	0	0 0	0	0
ID																													
Z	RW PHYEND								W	rite '	'1' t	o d	isal	ole i	ntei	rrup	t fo	r ev	ent	PH	/EN	D							
		Clear	1						Dis	sable	е																		
		Disabled	0						Re	ad: I	Disa	able	ed																
		Enabled	1						Re	ad: I	Ena	ble	d																
a	RW CTEPRESENT								W	rite '	'1' t	o d	isal	ole i	ntei	rrup	t fo	r ev	ent	СТЕ	PR	ESE	NT						
		Clear	1						Dis	sable	е																		
		Disabled	0						Re	ad: I	Disa	able	ed																
		Enabled	1						Re	ad: I	Ena	ble	d																

6.12.15.41 CRCSTATUS

Address offset: 0x400

CRC status

Bit number		31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			А
Reset 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A R CRCSTATUS			CRC status of packet received
	CRCError	0	Packet received with CRC error
	CRCOk	1	Packet received with CRC ok

6.12.15.42 RXMATCH

Address offset: 0x408

Received address

Bit number	31	30	29	28 2	27 2	26 2	25 2	4 2	3 22	2 2	1 20	0 19	18	17	16	15	14 1	.3 1	2 1:	10	9	8	7	6	5	4	3	2 1	0
ID																												Δ Δ	AA
Reset 0x00000000	0	0	0	0	0 (0 (0 0) (0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	0	0	D 0	0
ID Acce Field																													
A R RXMATCH								R	ece	ive	d a	ddr	ess																

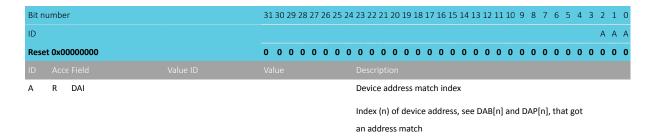
Logical address of which previous packet was received

6.12.15.43 RXCRC

Address offset: 0x40C

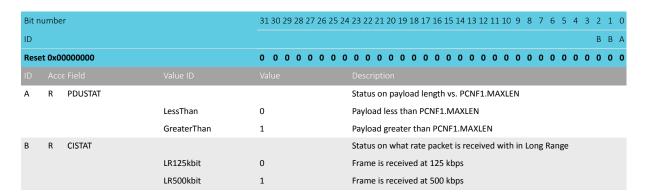
CRC field of previously received packet

A R RXCRC		CRC field of previously received packet
ID Acce Field		
Reset 0x00000000	0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ID		A A A A A A A A A A A A A A A A A A A
Bit number	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0


CRC field of previously received packet

6.12.15.44 DAI

Address offset: 0x410


Device address match index

6.12.15.45 PDUSTAT

Address offset: 0x414

Payload status

6.12.15.46 CTESTATUS

Address offset: 0x44C

CTEInfo parsed from received packet

Bit r	numbe	er	31 30 2	29 28	3 27 2	6 25	24	23 :	22 2	21 2	0 1	9 18	17	16	15	14 1	13 1	2 11	10 9	8	7	6	5	4	3 2	1	0
ID																					С	С	В	A	Α Α	A	Α
Rese	et OxC	0000000	0 0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0	0 0	0	0 (0	0	0	0	0	0	0	0
ID																											
Α	R	CTETIME						СТЕ	ETin	ne p	ars	ed f	rom	ра	cke	t											_
В	R	RFU						RFL	J pa	rse	d fr	om	pac	ket													
С	R	CTETYPE						СТЕ	ETvr	рер	arse	ed f	rom	pa	cke	t											

6.12.15.47 DFESTATUS

Address offset: 0x458

DFE status information

Bit n	umbe	r		31 30	29 28 2	27 26	25	24 :	23	22	21 2	0 19	18	17	16 :	15 1	4 13	3 12	11 1	10 9	8	7	6	5	4 3	2	1	0
ID																									В	Α	Α	Α
Rese	t 0x0	0000000		0 0	0 0	0 0	0	0	0	0	0 (0	0	0	0	0 (0	0	0	0 0	0	0	0	0	0 0	0	0	0
ID																												
Α	R	SWITCHINGSTATE						ı	Int	tern	al st	ate (of s	witc	hin	g st	ate i	macl	nine									
			Idle	0				:	Sw	vitch	ing	state	e Id	le														
			Offset	1				:	Sw	vitch	ing	state	e O	ffset														
			Guard	2				:	Sw	vitch	ing	state	e G	uard														
			Ref	3				:	Sw	vitch	ing	state	e Re	ef														
			Switching	4				:	Sw	vitch	ing	state	e Sv	vitcl	ning	3												
			Ending	5				:	Sw	vitch	ing	state	e Er	ndin	g													
В	R	SAMPLINGSTATE							Int	tern	al st	ate (of s	amp	ling	g sta	ite r	nach	ine									
			Idle	0					Sai	mpl	ing s	state	e Idl	e														
			Sampling	1					Saı	mpl	ing s	state	Sa	mpl	ing													

6.12.15.48 PACKETPTR

Address offset: 0x504

Packet pointer

Bit n	umber	31	30 2	9 2	8 27	26	25	24	23 2	22 2:	1 20	19	18	17 :	16 1	15 1	4 13	12	11 3	LO	9 8	3 7	6	5	4	3	2 :	1 0
ID		А	A	ДД	A A	Α	Α	Α	Α.	А А	A A	Α	Α	Α	Α.	Α ,	А А	Α	Α	Α.	A A	\ A	Α	Α	Α	Α	A A	A A
Rese	t 0x00000000	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 (0 0
ID																												
Α	RW PACKETPTR								Pac	ket p	poir	iter																
									Pac	ket a	add	ress	to	be ι	ıse	d fo	r the	e ne	xt tr	ans	smis	sio	ı or					
									rece	eptic	on. \	Whe	en t	rans	smi	ttin	g, th	ie pa	acke	t p	oint	ed 1	o b	y				
									this	add	dres	s wi	II b	e tra	ansı	mit	ted a	and	whe	n r	ecei	vin	g, th	ne				
									rece	eive	d pa	icke	t w	ill b	e w	ritt	en to	thi	is ac	ldre	ess.	This	ad	dre	SS			
									is a	byte	e ali	gne	d R	AM	ado	dre	SS.											
										No	ote:	Se	e th	e m	em	nory	cha	pte	r for	de	tails	ab	out					
										wł	hich	me	mo	ries	are	e av	ailab	ole f	or E	asy	DM	A.						

6.12.15.49 FREQUENCY

Address offset: 0x508

Frequency

Bit r	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				BAAAAA
Res	et 0x00000002		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW FREQUENCY		[0100]	Radio channel frequency
				Frequency = 2400 + FREQUENCY (MHz).
В	RW MAP			Channel map selection.
		Default	0	Channel map between 2400 MHZ 2500 MHz
				Frequency = 2400 + FREQUENCY (MHz)
		Low	1	Channel map between 2360 MHZ 2460 MHz
				Frequency = 2360 + FREQUENCY (MHz)

6.12.15.50 TXPOWER

Address offset: 0x50C

Output power

Bit nun	nher		31 30	29 :	28 27	7 26 3	25 24	23.2	2 21	20	19 1	8 17	7 16	15	14 1	3 12	2 11	10	9	8	7	6	5	4 3	2	1	0
ID	inder		3130	23.	20 27	202	25 2 1	23 2		. 20	15 1	0 1.	, 10	13		.5 12		10						А А			
				_						_			_	_	_		_	_									
Reset 0	0x00000000		0 0	0	0 0	0	0 0	0 (0 0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0	0	0 0	0	0	0
ID A	Acce Field	Value ID	Value					Des	cripti	ion																	
A I	RW TXPOWER							RAD	OIO o	utp	ut po	owe	r														
								Out	put p	oow	er in	nu	mbe	r of	dBı	m, i.	e. if	the	va	lue	-20	is					
								spec	cified	d the	e out	tput	pov	wer	will	be s	set t	o -2	0 d	lBm							
		Pos8dBm	8x0					+8 c	dBm																		
		Pos7dBm	0x7					+7 c	Bm																		
		Pos6dBm	0x6					+6 c	Bm																		
		Pos5dBm	0x5					+5 d	Bm																		
		Pos4dBm	0x4					+4 d	lBm																		
		Pos3dBm	0x3					+3 d	lBm																		
		Pos2dBm	0x2					+2 d	lBm																		
		0dBm	0x0					0 dE	3m																		
		Neg4dBm	0xFC					-4 d	Bm																		
		Neg8dBm	0xF8					-8 d	Bm																		
		Neg12dBm	0xF4					-12	dBm	ı																	
		Neg16dBm	0xF0					-16	dBm	1																	
		Neg20dBm	0xEC					-20	dBm	1																	
		Neg30dBm	0xE2					-40	dBm	ı														D	epre	ecat	ed
		Neg40dBm	0xD8					-40	dBm	1																	

6.12.15.51 MODE

Address offset: 0x510

Data rate and modulation

Bit number		31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			A A A A
Reset 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A RW MODE			Radio data rate and modulation setting. The radio supports
			frequency-shift keying (FSK) modulation.
	Nrf_1Mbit	0	1 Mbps Nordic proprietary radio mode
	Nrf_2Mbit	1	2 Mbps Nordic proprietary radio mode
	Ble_1Mbit	3	1 Mbps BLE
	Ble_2Mbit	4	2 Mbps BLE
	Ble_LR125Kbit	5	Long range 125 kbps TX, 125 kbps and 500 kbps RX
	Ble_LR500Kbit	6	Long range 500 kbps TX, 125 kbps and 500 kbps RX
	leee802154_250Kbit	15	IEEE 802.15.4-2006 250 kbps

6.12.15.52 PCNF0

Address offset: 0x514

4463_014 v0.7

Packet configuration register 0

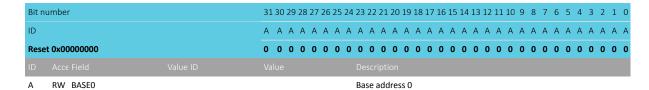
210

Bit n	umber		3	1 30	29	28	27	26	25	24	23 2	22 2	21 2	0 1	9 18	3 1	7 16	5 15	14	13 1	2 11	. 10	9	8	7	6	5 4	1 3	2	1	0
ID				J	J			1	Н	Н	G	G	F	E	E	Е	Ε							С				Α	Α	Α	Α
Rese	et 0x00000000		0	0	0	0	0	0	0	0	0	0	0 0) (0	0	0	0	0	0 (0	0	0	0	0	0	0 (0	0	0	0
ID																															
Α	RW LFLEN										Len	gth	on	air	of I	EN	GTI	H fie	eld i	n nu	mbe	er of	f bit	ts.							
С	RW SOLEN										Len	gth	on	air	of S	60 f	ield	l in	nun	ber	of b	ytes	S.								
Ε	RW S1LEN										Len	gth	on	air	of S	51 f	ield	l in	nun	ber	of b	its.									
F	RW S1INCL										Incl	ude	or	exc	lud	e S	1 fi	eld	in R	AM											
		Automatic	0								Incl	ude	S1	fie	ld iı	n R	ΑM	onl	y if	S1LE	N >	0									
		Include	1								Alw	ays	inc	lud	e S	1 fi	eld	in R	AM	inde	eper	nder	nt o	of S1	LLEI	N					
G	RW CILEN										Len	gth	of o	cod	e ir	dic	ato	r - I	ong	rang	ge										
Н	RW PLEN										Len	gth	of p	ore	aml	ble	on	air.	Dec	isior	ро	int:	TAS	SKS_	_ST/	ART	tas	k			
		8bit	0								8-b	it pı	rear	nbl	е																
		16bit	1								16-	bit _l	prea	aml	ole																
		32bitZero	2								32-	bit 2	zero	pr	ean	nbl	e - ı	use	d fo	IEE	E 80	2.15	5.4								
		LongRange	3								Pre	aml	ble -	- us	ed	for	BLE	lor	ng ra	nge											
I	RW CRCINC										Ind	icat	es it	f LE	NG	ТН	fiel	d co	onta	ins (RC	or n	ot								
		Exclude	0								LEN	IGT	H do	oes	no	t cc	nta	in (CRC												
		Include	1								LEN	IGT	H in	clu	des	CR	C														
J	RW TERMLEN										Len	gth	of 7	TER	M 1	field	d in	Lor	ng R	ange	ор	erat	ion								
												-							-	_											

6.12.15.53 PCNF1

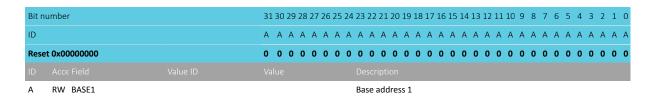
Address offset: 0x518

Packet configuration register 1


Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			E [C C C B B B B B B B A A A A A A A
Rese	t 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
				Description
Α	RW MAXLEN		[0255]	Maximum length of packet payload. If the packet payload is larger than MAXLEN, the radio will truncate the payload to
В	RW STATLEN		[0255]	MAXLEN. Static length in number of bytes
				The static length parameter is added to the total length
				of the payload when sending and receiving packets, e.g. if
				the static length is set to N the radio will receive or send N
				bytes more than what is defined in the LENGTH field of the
				packet.
С	RW BALEN		[24]	Base address length in number of bytes
				The address field is composed of the base address and the
				one byte long address prefix, e.g. set BALEN=2 to get a total
				address of 3 bytes.
D	RW ENDIAN			On-air endianness of packet, this applies to the SO, LENGTH,
				S1, and the PAYLOAD fields.
		Little	0	Least significant bit on air first
		Big	1	Most significant bit on air first
Е	RW WHITEEN			Enable or disable packet whitening
		Disabled	0	Disable
		Enabled	1	Enable

6.12.15.54 BASEO

Address offset: 0x51C


Base address 0

6.12.15.55 BASE1

Address offset: 0x520

Base address 1

6.12.15.56 PREFIXO

Address offset: 0x524

Prefixes bytes for logical addresses 0-3

A-D RW AP[i] (i=03)		Address prefix i.
ID Acce Field		Value Description
Reset 0x00000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID		D D D D D D D C C C C C C C B B B B B B
Bit number		31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.12.15.57 PREFIX1

Address offset: 0x528

Prefixes bytes for logical addresses 4-7

Bit number	31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID	D D D D D D D	O C C C C C C C B B B B B B B A A A A A A
Reset 0x00000000	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		Description
A-D RW AP[i] (i=47)		Address prefix i.

6.12.15.58 TXADDRESS

Address offset: 0x52C
Transmit address select

ID Acce Field Value ID	
10 4 5:11	Value Description
Reset 0x00000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID	ААА
Bit number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Logical address to be used when transmitting a packet

6.12.15.59 RXADDRESSES

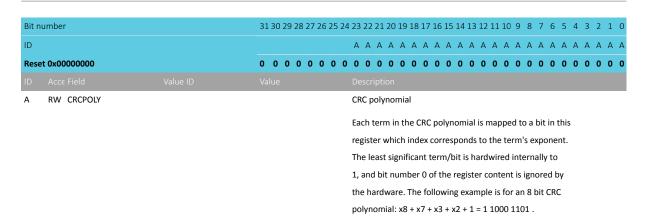
Address offset: 0x530 Receive address select

Bit number		31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			HGFEDCBA
Reset 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A-H RW ADDR[i] (i=07)			Enable or disable reception on logical address i.
	Disabled	0	Disable
	Enabled	1	Enable

6.12.15.60 CRCCNF

Address offset: 0x534

CRC configuration


Bit number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 ID B B Reset 0x000000000	0 0 0	A A
Reset 0x000000000 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	
	0 0 0	
ID Acce Field Value ID Value Description		
A RW LEN [13] CRC length in number of bytes.		
Note: For MODE Ble LR125Kbit and		
Ble LR500Kbit, only LEN set to 3 is supported		
Disabled 0 CRC length is zero and CRC calculation is disabled		
One 1 CRC length is one byte and CRC calculation is enabled		
Two 2 CRC length is two bytes and CRC calculation is enabled		
Three 3 CRC length is three bytes and CRC calculation is enabled		
B RW SKIPADDR Include or exclude packet address field out of CRC		
calculation.		
Include 0 CRC calculation includes address field		
Skip 1 CRC calculation does not include address field. The CRC		
calculation will start at the first byte after the address.		
leee802154 2 CRC calculation as per 802.15.4 standard. Starting at first		
byte after length field.		

6.12.15.61 CRCPOLY

Address offset: 0x538

CRC polynomial

6.12.15.62 CRCINIT

Address offset: 0x53C

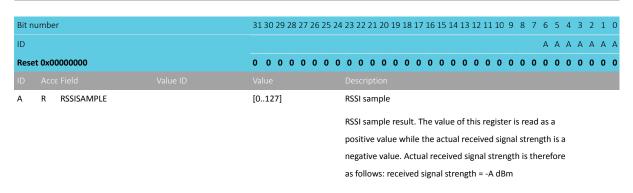
CRC initial value

Α	RW CRCINIT		CRC initial value
ID			
Res	et 0x00000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID			A A A A A A A A A A A A A A A A A A A
Bit r	number	31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Initial value for CRC calculation

6.12.15.63 TIFS

Address offset: 0x544
Interframe spacing in µs


Bit n	umber	31 30	29	28 2	27 2	6 25	5 24	23 2	22 2	21 2	0 1	9 18	3 17	16	15 1	14 13	3 12	11 1	0 9	8	7	6	5	4	3	2	1 0
ID																			Α	Α	Α	Α	Α	Α	Α	Α	A A
Rese	t 0x00000000	0 0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0	0	0 0	0	0 (0	0	0	0	0	0	0	0	0 0
ID																											
Α	RW TIFS							Inte	erfra	ame	sp	acir	ıg ir	μs													
								Inte	erfra	ame	e sp	ace	is t	ne t	ime	inte	rval	betv	vee	n tv	VO						
								con	sec	utiv	/e p	ack	ets.	It is	de	fined	l as	the t	ime	, in							
								mic	ros	eco	nds	, fro	m t	he	end	of t	he la	st b	it of	the	pr	evio	ous				
								pac	ket	to	the	star	t of	the	efir	st bit	of t	he s	ubs	equ	ent	pa	cket	t.			

6.12.15.64 RSSISAMPLE

Address offset: 0x548

RSSI sample

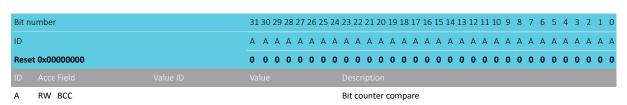
6.12.15.65 STATE

Address offset: 0x550 Current radio state

Bit n	umbe	er		31 3	0 29 28	27 26	25	24 2	3 22	21 20	0 19 :	18 1	7 16	15	14 :	13 1	2 11	10 :	9 8	7	6	5	4	3 :	2 1	. 0
ID																								Α,	Δ Δ	A A
Rese	et OxO	0000000		0	0 0	0 0	0	0 (0 0	0 0	0	0 (0 0	0	0	0 (0	0	0 0	0	0	0	0	0 (0 0	0
ID																										
Α	R	STATE						C	urre	nt rad	dio st	ate														
			Disabled	0				R	ADIC) is in	the	Disa	blec	l sta	te											
			RxRu	1				R	ADIC) is in	the	RXR	U sta	ate												
			RxIdle	2				R	ADIC) is in	the	RXII	DLE s	state	•											
			Rx	3				R	ADIC) is in	the	RX s	tate													
			RxDisable	4				R	ADIC) is in	the	RXD	ISAE	BLEC	sta	ate										
			TxRu	9				R	ADIC) is in	the	TXR	U sta	ate												
			TxIdle	10				R	ADIC) is in	the	TXI	DLE s	tate	:											
			Tx	11				R	ADIC) is in	the	TX s	tate													
			TxDisable	12				R	ADIC) is in	the	TXD	ISAB	BLED	sta	ate										

6.12.15.66 DATAWHITEIV

Address offset: 0x554


Data whitening initial value

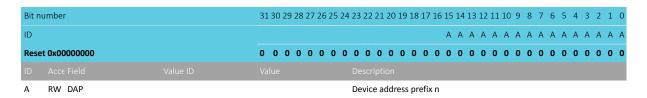
Bit n	umber	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
ID			ААААА									
Rese	et 0x00000040	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
Α	RW DATAWHITEIV		Data whitening initial value. Bit 6 is hardwired to '1', writing									
			'0' to it has no effect, and it will always be read back and									
			used by the device as '1'.									
			Bit 0 corresponds to Position 6 of the LSFR, Bit 1 to Position									
			5, etc.									

6.12.15.67 BCC

Address offset: 0x560 Bit counter compare

Bit counter compare register

6.12.15.68 DAB[n] (n=0..7)


Address offset: $0x600 + (n \times 0x4)$ Device address base segment n

Α	RW DAB									De	vic	e a	ddr	ess	bas	se s	eg	me	nt r	n												
ID																																
Rese	et 0x00000000		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0 0) (0	0	0	0	0
ID	ID			Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α.	A	Δ ,	Α Α	Δ Α	\ A	A	Α	Α	Α	Α ,
Bit n	Bit number			30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12 1	11 1	.0 9	9 8	3 7	' 6	5 5	4	3	2	1

6.12.15.69 DAP[n] (n=0..7)

Address offset: $0x620 + (n \times 0x4)$

Device address prefix n

6.12.15.70 DACNF

Address offset: 0x640

Device address match configuration

Bit no	umber		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 1	.4 13	12 1	1 10	9 8	3 7	6	5	4	3 2	1 0)
ID					Р (O N	М	L K	J	Н	G	F	E I	ОС	ВА	ĺ
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 (0 0	0 (0	0 (0	0	0	0 (0 0	0 0	
ID																ı
A-H	RW ENA[i] (i=07)			Enable or disable device address matching using device												
				address i												
		Disabled	0	Disabled												
		Enabled	1	Enabled												
I-P	RW TXADD[i] (i=07)			TxAdd for device address	s i											

6.12.15.71 MHRMATCHCONF

Address offset: 0x644

Search pattern configuration

Bit number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID	A A A A A A A A A A A A A A A A A A A
Reset 0x00000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID	Value Description

A RW MHRMATCHCONF

Search pattern configuration

6.12.15.72 MHRMATCHMAS

Address offset: 0x648

Pattern mask

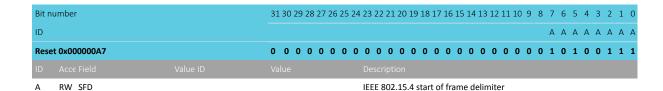
Α	RW MHRMATCHMAS									Pa	tte	rn r	nas	k																		
ID																																
Res	et 0x00000000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0	0	0	0
ID		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α.	Α ,	Δ Δ	Α	Α	Α
Bit r	number	31	.30	29	28	27	26	25	24	23	22	21	20	19	18 :	17 :	16	15 :	14 :	13 :	12 :	11	10	9	8	7	6	5 4	4 3	2	1	0

6.12.15.73 MODECNF0

Address offset: 0x650

Radio mode configuration register 0

Bit n	umber		31 30 29 28	27 26	25 24	23 2	2 21	20 19	18	17 1	.6 15	5 14	13 1	2 1:	1 10	9	8 7	6	5	4 3	2	1	0
ID																С	С						Α
Rese	t 0x00000200		0 0 0 0	0 0	0 0	0 (0 0	0 0	0	0	0 0	0	0 (0 0	0	1	0 0	0	0	0 (0	0	0
ID																							
Α	RW RU					Radi	io rar	mp-up	tin	ne													
		Default	0			Defa	ault r	amp-ı	up t	ime	(tRX	EN a	and t	TXE	N), (com	pati	ble v	vith				
						firm	ware	writt	en f	for n	RF5	1											
		Fast	1			Fast	ramı	p-up (tRX	EN,F	AST	and	l tTX	EN,F	AST), se	e el	ectri	cal				
						spec	cifica	tion fo	or m	nore	info	rma	tion										
						Whe	en en	abled	i, Tii	FS is	not	enf	orce	d by	har	dwa	ire a	nd					
						soft	ware	need	s to	con	trol	whe	n to	tur	n on	the	Rac	lio.					
С	RW DTX					Defa	ault T	X valu	ue														
						Spec	cifies	what	the	RAI	010 \	will	trans	mit	whe	en it	is n	ot					
						start	ted, i	.e. be	twe	en:													
						RAD	IO.E\	VENTS	S_RE	EAD	/ and	d RA	DIO.	TAS	KS_S	TAF	RT						
						RAD	IO.E	VENTS	S_E1	ND a	nd R	ADI	O.TA	SKS	_STA	RT							
						RAD	IO.E\	VENTS	5_E1	ND a	nd R	ADI	O.E\	'EN	rs_d	ISA	BLEC)					
							Not	te: Fo	r IEI	EE 8	02.1	5.4	250	kbps	s mo	de	only						
							Cen	nter is	a va	alid s	ettii	ng											
									D'							- D							
								te: Fo						٠.		з ка	inge						
							mo	de on	iy C	ente	15 6	ı va	iia se	ctin	g								
		B1	0			Tran	smit	'1'															
		В0	1			Tran	smit	'0'															

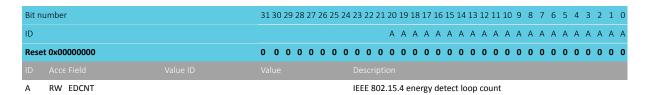


Bit number		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			C C A
Reset 0x00000200		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
	Center	2	Transmit center frequency
			When tuning the crystal for center frequency, the RADIO
			must be set in DTX = Center mode to be able to achieve the

6.12.15.74 SFD

Address offset: 0x660

IEEE 802.15.4 start of frame delimiter



6.12.15.75 EDCNT

Address offset: 0x664

IEEE 802.15.4 energy detect loop count

Number of iterations to perform an ED scan. If set to 0 one scan is performed, otherwise the specified number + 1 of ED scans will be performed and the max ED value tracked in EDSAMPLE.

6.12.15.76 EDSAMPLE

Address offset: 0x668

IEEE 802.15.4 energy detect level

Bit number	31 30 29 28 27 26 25	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		A A A A A A A
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A R EDLVL	[0127]	IEEE 802.15.4 energy detect level
		Register value must be converted to IEEE 802.15.4 range by
		an 8-bit saturating multiplication by factor ED_RSSISCALE, as
		shown in the code example for ED sampling

6.12.15.77 CCACTRL

Address offset: 0x66C

IEEE 802.15.4 clear channel assessment control

NORDIC*

Bit n	number		31	. 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13 1	2 1	1 10	9	8	7	6	5	4 3	2	1	0
ID			D	D	D	D	D	D	D	D	С	С	С	С	С	С	С	С	В	В	В	3 E	3 B	В	В					Α	Α	Α
Rese	et 0x052D0000		0	0	0	0	0	1	0	1	0	0	1	0	1	1	0	1	0	0	0) (0 0	0	0	0	0	0	0 0	0	0	0
ID																																
Α	RW CCAMODE										CC	Αr	noc	de (of o	pei	ati	on														_
		EdMode	0								Ene	erg	уа	bo	ve t	hre	sho	ld														
											Wi	ill n	ерс	ort	bus	y w	he	nev	er	ene	rgy	is d	lete	tec	lab	ove						
											CC	ΑE	DTH	HRE	ES																	
		CarrierMode	1								Car	rrie	er s	eer	1																	
											Wi	ll n	ерс	ort	bus	y w	he	nev	er	cor	nplia	nt	IEEE	80	2.1	5.4	sign	al i	S			
											see	en																				
		CarrierAndEdMode	2								Ene	erg	уа	bo	ve t	hre	sho	ld	ΑN	D c	arrie	er s	een									
		CarrierOrEdMode	3								Ene	erg	уа	bo	ve t	hre	sho	ld	OR	cai	rier	see	en									
		EdModeTest1	4								Ene	erg	уа	bo	ve t	hre	sho	ld	tes	t m	ode	tha	at w	ll a	oor	t wl	hen	firs	t			
											ED	m	eas	ure	eme	nt	ove	r tl	nre:	sho	ld is	se	en. I	No a	iver	agi	ng.					
В	RW CCAEDTHRES										CC	Αe	ne	rgy	bu	sy t	hre	sho	old.	Us	ed i	n al	l the	e CC	A n	nod	les					
											exc	сер	t C	arr	ierľ	ИO	de.															
											Mι	ust	be	со	nve	rte	d fr	om	IE	E 8	302.:	15.4	4 rai	ige	by (ivib	ding	g by	,			
											fac	to	EC)_R	SSI	SCA	\LE	- si	mil	ar t	o EI	SA	MP	E r	egis	ter						
С	RW CCACORRTHRES										CC	A c	orr	ela	tor	bu	sy t	hre	sho	old.	Onl	y re	elev	ant	to							
											Car	rrie	erM	lod	e, (Carr	ier	٩nd	dEd	Mc	de,	and	l Ca	rrie	rOr	EdΝ	∕lod	e.				
D	RW CCACORRCNT										Lin	nit	for	ос	cur	anc	es a	bc	ve	CC	ACO	RRT	ΓHRI	S. \	Νh	en r	not					
											eq	ual	to	zei	o t	ne (cori	ola	tor	ba	sed	sig	nal d	lete	ct i	s er	nabl	ed.				

6.12.15.78 DFEMODE

Address offset: 0x900

Whether to use Angle-of-Arrival (AOA) or Angle-of-Departure (AOD)

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A A
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW DFEOPMODE			Direction finding operation mode
		Disabled	0	Direction finding mode disabled
		AoD	2	Direction finding mode set to AoD
		AoA	3	Direction finding mode set to AoA

6.12.15.79 CTEINLINECONF

Address offset: 0x904

Configuration for CTE inline mode

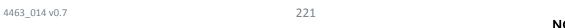
Bit r	number		31	30	29 :	28 2	27 20	6 25	5 24	23	22	21	20 :	19 1	.8 1	7 1	6 15	5 14	13	12	11	10	9	8	7 6	5 5	4	3	2	1 0
ID			1	1	1	I	1 1	- 1	- 1	Н	Н	Н	Н	н	H F	1 1	l G	G	G	F	F	F			Ε Ε		С	В		Α
Res	et 0x00002800		0	0	0	0	0 0	0	0	0	0	0	0	0 (0 () (0	0	1	0	1	0	0	0 () () (0	0	0	0 0
ID																														
Α	RW CTEINLINECTRLEN									En	nabl	e pa	arsii	ng o	f C	TEIr	nfo	fror	n re	ecei	ived	l pa	cke	t in	BLE					
										m	ode	es.																		
		Enabled	1							Pa	ırsir	ng o	f CT	Eln	fo is	s er	abl	ed												
		Disabled	0							Pa	rsir	ng o	f CT	Elni	fo is	s di	sab	led												
В	RW CTEINFOINS1									СТ	Eln	fo i	s S1	byt	e o	r no	ot													

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				H H H H H H H H G G G F F F E E C B A
	et 0x00002800			0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
ID				Description
		InS1	1	CTEInfo is in S1 byte (data PDU)
		NotInS1	0	CTEInfo is NOT in S1 byte (advertising PDU)
С	RW CTEERRORHANDLING			Sampling/switching if CRC is not OK
		Yes	1	Sampling and antenna switching also when CRC is not OK
		No	0	No sampling and antenna switching when CRC is not OK
Е	RW CTETIMEVALIDRANGE			Max range of CTETime
				Note: Valid range is 2-20 in BLE core spec. If
				larger than 20, it can be an indication of an error
				in the received packet.
		20	0	20 in 8us unit (default)
				Set to 20 if parsed CTETime is larger han 20
		21	1	·
		31 63	1 2	31 in 8us unit 63 in 8us unit
F	RW CTEINLINERXMODE1US	03	2	
'	KW CILINLINEKKIWODE103			Spacing between samples for the samples in the SWITCHING period when CTEINLINEMODE is set
				3WITCHING PERIOD WHEN CILINEINLINODE IS SEC
				When the device is in AoD mode, this is used when the
				received CTEType is "AoD 1 us". When in AoA mode, this is
				used when TSWITCHSPACING is 2 us.
		4us	1	4us
		2us	2	2us
		1us	3	1us
		500ns	4	0.5us
		250ns	5	0.25us
		125ns	6	0.125us
G	RW CTEINLINERXMODE2US			Spacing between samples for the samples in the
				SWITCHING period when CTEINLINEMODE is set
				When the device is in AoD mode, this is used when the
				received CTEType is "AoD 2 us". When in AoA mode, this is
				used when TSWITCHSPACING is 4 us.
		4us	1	4us
		2us	2	2us
		1us	3	1us
		500ns	4	0.5us
		250ns	5	0.25us
		125ns	6	0.125us
Н	RW SOCONF			SO bit pattern to match
				The least significant bit always corresponds to the first bit of
				S0 received.
I	RW SOMASK			S0 bit mask to set which bit to match
				The least significant bit always corresponds to the first bit of
				SO received.

6.12.15.80 DFECTRL1

Address offset: 0x910

Various configuration for Direction finding



Bit n	umber		31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
D			1.1.1	I H H H H G G G F E E E C C C B A A A A
Rese	et 0x00023282		0 0 0 0 0 0	0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1
١	RW NUMBEROF8US			Length of the AoA/AoD procedure in number of 8 us units
				Always used in TX mode, but in RX mode only when
				CTEINLINECTRLEN is 0
В	RW DFEINEXTENSION			Add CTE extension and do antenna switching/sampling in
				this extension
		CRC	1	AoA/AoD procedure triggered at end of CRC
		Payload	0	Antenna switching/sampling is done in the packet payload
С	RW TSWITCHSPACING			Interval between every time the antenna is changed in the
				SWITCHING state
		4us	1	4us
		2us	2	2us
		1us	3	1us
E	RW TSAMPLESPACINGREF			Interval between samples in the REFERENCE period
		4us	1	4us
		2us	2	2us
		1us 500ns	3	1us 0.5us
		250ns	5	0.25us
		125ns	6	0.125us
F	RW SAMPLETYPE		-	Whether to sample I/Q or magnitude/phase
		IQ	0	Complex samples in I and Q
		MagPhase	1	Complex samples as magnitude and phase
G	RW TSAMPLESPACING			Interval between samples in the SWITCHING period when
				CTEINLINECTRLEN is 0
				N N
				Note: Not used when CTEINLINEDYMODELLIS or
				set. Then either CTEINLINERXMODE1US or CTEINLINERXMODE2US are used.
				CTEINEIMINODE203 dre daed.
		4us	1	4us
		2us	2	2us
		1us	3	1us
		500ns	4	0.5us
		250ns	5	0.25us
_	DW/ DEDEATDATTEDNI	125ns	6	0.125us
+	RW REPEATPATTERN			Repeat each individual antenna pattern N times sequentially, i.e. P0, P0, P1, P1, P2, P2, P3, P3, etc.
		NoRepeat	0	Do not repeat (1 time in total)
	RW AGCBACKOFFGAIN		·	Gain will be lowered by the specified number of gain steps
				at the start of CTE
				Note: First LNAGAIN gain drops, then MIXGAIN,
				then AAFGAIN
				arcii Aar Qarii

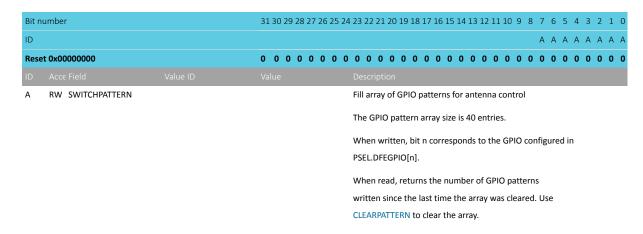
6.12.15.81 DFECTRL2

Address offset: 0x914

Start offset for Direction finding

Bit r	number		31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			B
Res	et 0x00000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID			Value Description
Α	RW TSWITCHOF	SET	Signed value offset after the end of the CRC before starting
			switching in number of 16M cycles
			Note: Decreasing TSWITCHOFFSET beyond the trigger of the AoA/AoD procedure will have no effect
В	RW TSAMPLEOF	FSET	Signed value offset before starting sampling in number of
			16M cycles relative to the beginning of the REFERENCE state
			- 12 us after switching start
			Note: Decreasing TSAMPLEOFFSET beyond the trigger of the AoA/AoD procedure will have no effect

6.12.15.82 SWITCHPATTERN


Address offset: 0x928

GPIO patterns to be used for each antenna

Maximum 8 GPIOs can be controlled. To secure correct signal levels on the pins, the pins must be configured in the GPIO peripheral as described in Pin configuration.

If, during switching, the total number of antenna slots is bigger than the number of written patterns, the RADIO loops back to the pattern used after the reference pattern.

A minimum number of 3 patterns must be written.

6.12.15.83 CLEARPATTERN

Address offset: 0x92C

Clear the GPIO pattern array for antenna control

		Clear	1	Clear the GPIO pattern
Α	RW CLEARPATTERN			Clears GPIO pattern array for antenna control
ID				
Res	et 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Α
Bit r	umber		31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.12.15.84 PSEL.DFEGPIO[n] (n=0..7)

Address offset: $0x930 + (n \times 0x4)$

Pin select for DFE pin n

Must be set before enabling the radio

Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	АААА
Rese	t OxFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect

6.12.15.85 DFEPACKET.PTR

Address offset: 0x950

Data pointer

	RW PTR	Data pointer
ID		
Rese	t 0x00000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID		A A A A A A A A A A A A A A A A A A A
Bit n	umber	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Note: See the memory chapter for details about which memories are available for EasyDMA.

6.12.15.86 DFEPACKET.MAXCNT

Address offset: 0x954

Maximum number of buffer words to transfer

Α	RW MAXCNT		Maximum number of buffer words to transfer
ID			
Res	et 0x00001000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID			A A A A A A A A A A A A A A A A A A A
Bit	number	31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

6.12.15.87 DFEPACKET.AMOUNT

Address offset: 0x958

Number of samples transferred in the last transaction

Reset 0x000000000 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reset 0x000000000 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID A	. A A A A A A A A A A A A A
Bit number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.12.15.88 POWER

Address offset: 0xFFC
Peripheral power control

Bit r	umber		31 30 29 28 27 2	7 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	et 0x00000001		0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW POWER			Peripheral power control. The peripheral and its registers
				will be reset to its initial state by switching the peripheral
				off and then back on again.
		Disabled	0	Peripheral is powered off
		Enabled	1	Peripheral is powered on

6.12.16 Electrical specification

6.12.16.1 General radio characteristics

Symbol	Description	Min.	Тур.	Max.	Units
f _{OP}	Operating frequencies	2360		2500	MHz
f _{PLL,CH,SP}	PLL channel spacing		1		MHz
f _{DELTA,1M}	Frequency deviation @ 1 Mbps		±170		kHz
f _{DELTA,BLE,1M}	Frequency deviation @ BLE 1 Mbps		±250		kHz
f _{DELTA,2M}	Frequency deviation @ 2 Mbps		±320		kHz
f _{DELTA,BLE,2M}	Frequency deviation @ BLE 2 Mbps		±500		kHz
fsk _{BPS}	On-the-air data rate	125		2000	kbps
f _{chip, IEEE 802.15.4}	Chip rate in IEEE 802.15.4 mode		2000		kchip,
					S

6.12.16.2 Radio current consumption (transmitter)

Symbol	Description	Min.	Тур.	Max.	Units
I _{TX,PLUS8dBM,DCDC}	TX only run current (DC/DC, 3 V) P _{RF} = +8 dBm		14.0		mA
I _{TX,PLUS8dBM}	TX only run current P _{RF} = +8 dBm		30.0		mA
I _{TX,PLUS4dBM,DCDC}	TX only run current (DC/DC, 3 V) $P_{RF} = +4 \text{ dBm}$		9.4		mA
I _{TX,PLUS4dBM}	TX only run current P _{RF} = +4 dBm		20.4		mA
I _{TX,0dBM,DCDC}	TX only run current (DC/DC, 3 V) $P_{RF} = 0 \text{ dBm}$		4.9		mA
I _{TX,0dBM}	TX only run current P _{RF} = 0 dBm		10.4		mA
I _{TX,MINUS4dBM,DCDC}	TX only run current DC/DC, 3 V P _{RF} = -4 dBm		3.8		mA
I _{TX,MINUS4dBM}	TX only run current P _{RF} = -4 dBm		8.1		mA
I _{TX,MINUS8dBM,DCDC}	TX only run current DC/DC, 3 V P _{RF} = -8 dBm		3.4		mA
I _{TX,MINUS8dBM}	TX only run current P _{RF} = -8 dBm		7.1		mA
I _{TX,MINUS12dBM,DCDC}	TX only run current DC/DC, 3 V P _{RF} = -12 dBm		3.1		mA
I _{TX,MINUS12dBM}	TX only run current P _{RF} = -12 dBm		6.4		mA
I _{TX,MINUS16dBM,DCDC}	TX only run current DC/DC, 3 V P _{RF} = -16 dBm		2.9		mA

Symbol	Description	Min.	Тур.	Max.	Units
I _{TX,MINUS16dBM}	TX only run current P _{RF} = -16 dBm		6.0		mA
I _{TX,MINUS20dBM,DCDC}	TX only run current DC/DC, 3 V P _{RF} = -20 dBm		2.7		mA
I _{TX,MINUS20dBM}	TX only run current P _{RF} = -20 dBm		5.6		mA
I _{TX,MINUS40dBM,DCDC}	TX only run current DC/DC, 3 V P _{RF} = -40 dBm		2.3		mA
I _{TX,MINUS40dBM}	TX only run current P _{RF} = -40 dBm		4.6		mA
I _{START,TX,DCDC}	TX start-up current DC/DC, 3 V, P _{RF} = 4 dBm		4.2		mA
I _{START,TX}	TX start-up current, P _{RF} = 4 dBm		8.8		mA

6.12.16.3 Radio current consumption (Receiver)

Symbol	Description	Min.	Тур.	Max.	Units
I _{RX,1M,DCDC}	RX only run current (DC/DC, 3 V) 1 Mbps/1 Mbps BLE		4.7		mA
I _{RX,1M}	RX only run current (LDO, 3 V) 1 Mbps/1 Mbps BLE		9.8		mA
I _{RX,2M,DCDC}	RX only run current (DC/DC, 3 V) 2 Mbps/2 Mbps BLE		5.2		mA
I _{RX,2M}	RX only run current (LDO, 3 V) 2 Mbps/2 Mbps BLE		10.9		mA
I _{START,RX,1M,DCDC}	RX start-up current (DC/DC, 3 V) 1 Mbps/1 Mbps BLE		3.4		mA
I _{START,RX,1M}	RX start-up current 1 Mbps/1 Mbps BLE		6.8		mA

6.12.16.4 Transmitter specification

Symbol	Description	Min.	Тур.	Max.	Units
P _{RF}	Maximum output power		8		dBm
P _{RFC}	RF power control range		28		dB
P _{RFCR}	RF power accuracy			±4	dB
P _{RF1,1}	1st Adjacent Channel Transmit Power 1 MHz (1 Mbps)		-25		dBc
P _{RF2,1}	2nd Adjacent Channel Transmit Power 2 MHz (1 Mbps)		-54		dBc
P _{RF1,2}	1st Adjacent Channel Transmit Power 2 MHz (2 Mbps)		-26		dBc
P _{RF2,2}	2nd Adjacent Channel Transmit Power 4 MHz (2 Mbps)		-54		dBc
E _{vm}	Error vector magnitude in IEEE 802.15.4 mode (Offset EVM)		2		%rms
P _{harm2nd} , IEEE 802.15.4	2nd harmonics in IEEE 802.15.4 mode		-49		dBm
P _{harm3rd, IEEE 802.15.4}	3rd harmonics in IEEE 802.15.4 mode		-54		dBm

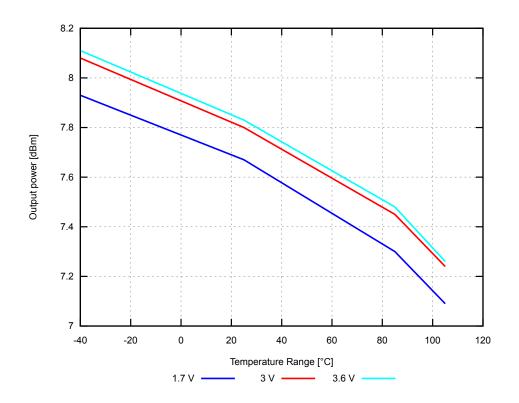


Figure 75: Output power, 1 Mbps Bluetooth low energy mode, at maximum TXPOWER setting (typical values)

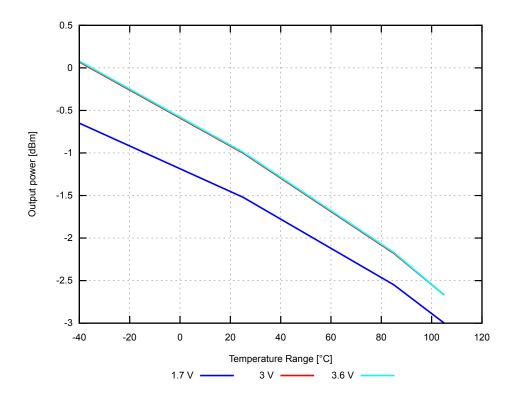


Figure 76: Output power, 1 Mbps Bluetooth low energy mode, at 0 dBm TXPOWER setting (typical values)

6.12.16.5 Receiver operation

Symbol	Description	Min.	Тур.	Max.	Units
P _{RX,MAX}	Maximum received signal strength at < 0.1% PER		0		dBm
P _{SENS,IT,1M}	Sensitivity, 1 Mbps nRF mode ideal transmitter ¹⁴		-92		dBm
P _{SENS,IT,2M}	Sensitivity, 2 Mbps nRF mode ideal transmitter ¹⁵		-89		dBm
P _{SENS,IT,SP,1M,BLE}	Sensitivity, 1 Mbps BLE ideal transmitter, packet length ≤ 37		-95		dBm
	bytes BER=1E-3 ¹⁶				
P _{SENS,IT,LP,1M,BLE}	Sensitivity, 1 Mbps BLE ideal transmitter, packet length ≥ 128		-94		dBm
	bytes BER=1E-4 ¹⁷				
P _{SENS,IT,SP,2M,BLE}	Sensitivity, 2 Mbps BLE ideal transmitter, packet length ≤ 37		-92		dBm
	bytes				
P _{SENS,IT,BLE LE125k}	Sensitivity, 125 kbps BLE mode		-103		dBm
P _{SENS,IT,BLE LE500k}	Sensitivity, 500 kbps BLE mode		-98		dBm
P _{SENS,IEEE 802.15.4}	Sensitivity in IEEE 802.15.4 mode		-99		dBm

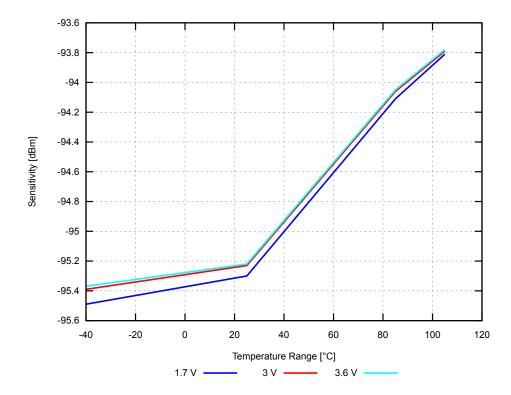


Figure 77: Sensitivity, 1 Mbps Bluetooth low energy mode, Regulator = LDO (typical values)

6.12.16.6 RX selectivity

RX selectivity with equal modulation on interfering signal ¹⁸

Typical sensitivity applies when ADDR0 is used for receiver address correlation. When ADDR[1...7] are used for receiver address correlation, the typical sensitivity for this mode is degraded by 3 dB.

Typical sensitivity applies when ADDR0 is used for receiver address correlation. When ADDR[1..7] are used for receiver address correlation, the typical sensitivity for this mode is degraded by 3 dB.

As defined in the Bluetooth Core Specification v4.0 Volume 6: Core System Package (Low Energy Controller Volume)

¹⁷ Equivalent BER limit < 10E-04

Desired signal level at PIN = -67 dBm. One interferer is used, having equal modulation as the desired signal. The input power of the interferer where the sensitivity equals BER = 0.1% is presented

Symbol	Description	Min.	Тур.	Max.	Units
C/I _{1M,co-channel}	1Mbps mode, Co-Channel interference		10		dB
C/I _{1M,-1MHz}	1 Mbps mode, Adjacent (-1 MHz) interference		-5		dB
C/I _{1M,+1MHz}	1 Mbps mode, Adjacent (+1 MHz) interference		-14		dB
C/I _{1M,-2MHz}	1 Mbps mode, Adjacent (-2 MHz) interference		-25		dB
C/I _{1M,+2MHz}	1 Mbps mode, Adjacent (+2 MHz) interference		-45		dB
C/I _{1M,-3MHz}	1 Mbps mode, Adjacent (-3 MHz) interference		-40		dB
C/I _{1M,+3MHz}	1 Mbps mode, Adjacent (+3 MHz) interference		-46		dB
C/I _{1M,±6MHz}	1 Mbps mode, Adjacent (≥6 MHz) interference		-52		dB
C/I _{1MBLE,co-channel}	1 Mbps BLE mode, Co-Channel interference		6		dB
C/I _{1MBLE,-1MHz}	1 Mbps BLE mode, Adjacent (-1 MHz) interference		-2		dB
C/I _{1MBLE,+1MHz}	1 Mbps BLE mode, Adjacent (+1 MHz) interference		-10		dB
C/I _{1MBLE,-2MHz}	1 Mbps BLE mode, Adjacent (-2 MHz) interference		-28		dB
C/I _{1MBLE,+2MHz}	1 Mbps BLE mode, Adjacent (+2 MHz) interference		-45		dB
C/I _{1MBLE,>3MHz}	1 Mbps BLE mode, Adjacent (≥3 MHz) interference		-54		dB
C/I _{1MBLE,image}	Image frequency interference		-28		dB
C/I _{1MBLE,image,1MHz}	Adjacent (1 MHz) interference to in-band image frequency		-37		dB
C/I _{2M,co-channel}	2 Mbps mode, Co-Channel interference		10		dB
C/I _{2M,-2MHz}	2 Mbps mode, Adjacent (-2 MHz) interference		-4		dB
C/I _{2M,+2MHz}	2 Mbps mode, Adjacent (+2 MHz) interference		-16		dB
C/I _{2M,-4MHz}	2 Mbps mode, Adjacent (-4 MHz) interference		-22		dB
C/I _{2M,+4MHz}	2 Mbps mode, Adjacent (+4 MHz) interference		-46		dB
C/I _{2M,-6MHz}	2 Mbps mode, Adjacent (-6 MHz) interference		-39		dB
C/I _{2M,+6MHz}	2 Mbps mode, Adjacent (+6 MHz) interference		-48		dB
C/I _{2M,≥12MHz}	2 Mbps mode, Adjacent (≥12 MHz) interference		-52		dB
C/I _{2MBLE,co-channel}	2 Mbps BLE mode, Co-Channel interference		7		dB
C/I _{2MBLE,-2MHz}	2 Mbps BLE mode, Adjacent (-2 MHz) interference		-2		dB
C/I _{2MBLE,+2MHz}	2 Mbps BLE mode, Adjacent (+2 MHz) interference		-12		dB
C/I _{2MBLE,-4MHz}	2 Mbps BLE mode, Adjacent (-4 MHz) interference		-25		dB
C/I _{2MBLE,+4MHz}	2 Mbps BLE mode, Adjacent (+4 MHz) interference		-46		dB
C/I _{2MBLE,≥6MHz}	2 Mbps BLE mode, Adjacent (≥6 MHz) interference		-54		dB
C/I _{2MBLE,image}	Image frequency interference		-25		dB
C/I _{2MBLE,image, 2MHz}	Adjacent (2 MHz) interference to in-band image frequency		-37		dB
C/I _{125k BLE LR,co-}	125 kbps BLE LR mode, Co-Channel interference		3		dB
channel					
C/I _{125k BLE LR,-1MHz}	125 kbps BLE LR mode, Adjacent (-1 MHz) interference		-9		dB
C/I _{125k BLE LR,+1MHz}	125 kbps BLE LR mode, Adjacent (+1 MHz) interference		-16		dB
C/I _{125k BLE LR,-2MHz}	125 kbps BLE LR mode, Adjacent (-2 MHz) interference		-28		dB
C/I _{125k BLE LR,+2MHz}	125 kbps BLE LR mode, Adjacent (+2 MHz) interference		-54		dB
C/I _{125k BLE LR,>3MHz}	125 kbps BLE LR mode, Adjacent (≥3 MHz) interference		-60		dB
C/I _{125k BLE LR,image}	Image frequency interference		-28		dB
C/I _{IEEE 802.15.4,-5MHz}	IEEE 802.15.4 mode, Adjacent (-5 MHz) rejection		-33		dB
C/I _{IEEE 802.15.4,+5MHz}	IEEE 802.15.4 mode, Adjacent (+5 MHz) rejection		-38		dB
C/I _{IEEE 802.15.4,±10MH}	, IEEE 802.15.4 mode, Alternate (±10 MHz) rejection		-49		dB

6.12.16.7 RX intermodulation

RX intermodulation 19

NORDIC SEMICONDUCTOR

Desired signal level at PIN = -64 dBm. Two interferers with equal input power are used. The interferer closest in frequency is not modulated, the other interferer is modulated equal with the desired signal. The input power of the interferers where the sensitivity equals BER = 0.1% is presented.

Symbol	Description	Min.	Тур.	Max.	Units
P _{IMD,5TH,1M}	IMD performance, 1 Mbps, 5th offset channel, packet length		-34		dBm
	≤ 37 bytes				
P _{IMD,5TH,1M,BLE}	IMD performance, BLE 1 Mbps, 5th offset channel, packet		-32		dBm
	length ≤ 37 bytes				
P _{IMD,5TH,2M}	IMD performance, 2 Mbps, 5th offset channel, packet length		-33		dBm
	≤ 37 bytes				
P _{IMD,5TH,2M,BLE}	IMD performance, BLE 2 Mbps, 5th offset channel, packet		-32		dBm
	length ≤ 37 bytes				

6.12.16.8 Radio timing

Symbol	Description	Min.	Тур.	Max.	Units
t _{TXEN,BLE,1M}	Time between TXEN task and READY event after channel	140		140	μs
	FREQUENCY configured (1 Mbps BLE and 150 µs TIFS)				
t _{TXEN,FAST,BLE,1M}	Time between TXEN task and READY event after channel	40		40	μs
	FREQUENCY configured (1 Mbps BLE with fast ramp-up and				
	150 μs TIFS)				
t _{TXDIS,BLE,1M}	When in TX, delay between DISABLE task and DISABLED	6		6	μs
	event for MODE = Nrf_1Mbit and MODE = Ble_1Mbit				
t _{RXEN,BLE,1M}	Time between the RXEN task and READY event after channel	140		140	μs
	FREQUENCY configured (1 Mbps BLE)				
t _{RXEN,FAST,BLE,1M}	Time between the RXEN task and READY event after channel	40		40	μs
	FREQUENCY configured (1 Mbps BLE with fast ramp-up)				
t _{RXDIS,BLE,1M}	When in RX, delay between DISABLE task and DISABLED	0		0	μs
	event for MODE = Nrf_1Mbit and MODE = Ble_1Mbit				
t _{TXDIS,BLE,2M}	When in TX, delay between DISABLE task and DISABLED	4		4	μs
	event for MODE = Nrf_2Mbit and MODE = Ble_2Mbit				
t _{RXDIS,BLE,2M}	When in RX, delay between DISABLE task and DISABLED	0		0	μs
	event for MODE = Nrf_2Mbit and MODE = Ble_2Mbit				
t _{TXEN,IEEE} 802.15.4	Time between TXEN task and READY event after channel	130		130	μs
	FREQUENCY configured (IEEE 802.15.4 mode)				
t _{TXEN,FAST,IEEE} 802.15.4	Time between TXEN task and READY event after channel	40		40	μs
	FREQUENCY configured (IEEE 802.15.4 mode with fast ramp-				
	up)				
t _{TXDIS,IEEE 802.15.4}	When in TX, delay between DISABLE task and DISABLED	21		21	μs
	event (IEEE 802.15.4 mode)				
t _{RXEN,IEEE 802.15.4}	Time between the RXEN task and READY event after channel	130		130	μs
	FREQUENCY configured (IEEE 802.15.4 mode)				
t _{RXEN,FAST,IEEE} 802.15.4	Time between the RXEN task and READY event after channel	40		40	μs
	FREQUENCY configured (IEEE 802.15.4 mode with fast ramp-				
	up)				
t _{RXDIS,IEEE 802.15.4}	When in RX, delay between DISABLE task and DISABLED	0.5		0.5	μs
	event (IEEE 802.15.4 mode)				
t _{RX-to-TX} turnaround	Maximum TX-to-RX or RX-to-TX turnaround time in IEEE		40		μs
	802.15.4 mode				

6.12.16.9 Received signal strength indicator (RSSI) specifications

Symbol	Description	Min.	Тур.	Max.	Units
RSSI _{ACC}	RSSI accuracy ²⁰		±2		dB
RSSI _{RESOLUTION}	RSSI resolution		1		dB
RSSI _{PERIOD}	RSSI sampling time from RSSI_START task		0.25		μs
RSSI _{SETTLE}	RSSI settling time after signal level change		15		μs

6.12.16.10 Jitter

Symbol	Description	Min.	Тур.	Max.	Units
t _{DISABLEDJITTER}	Jitter on DISABLED event relative to END event when		0.25		μs
	shortcut between END and DISABLE is enabled				
t _{READYJITTER}	Jitter on READY event relative to TXEN and RXEN task		0.25		μs

6.12.16.11 IEEE 802.15.4 mode energy detection constants

Symbol	Description	Min.	Тур.	Max.	Units
ED_RSSISCALE	Scaling value when converting between hardware-reported		5		
	value and dBm				
ED_RSSIOFFS	Offset value when converting between hardware-reported		-93		
	value and dBm				

6.13 RNG — Random number generator

The Random number generator (RNG) generates true non-deterministic random numbers based on internal thermal noise that are suitable for cryptographic purposes. The RNG does not require a seed value.

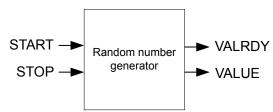


Figure 78: Random number generator

The RNG is started by triggering the START task and stopped by triggering the STOP task. When started, new random numbers are generated continuously and written to the VALUE register when ready. A VALRDY event is generated for every new random number that is written to the VALUE register. This means that after a VALRDY event is generated the CPU has the time until the next VALRDY event to read out the random number from the VALUE register before it is overwritten by a new random number.

6.13.1 Bias correction

A bias correction algorithm is employed on the internal bit stream to remove any bias toward '1' or '0'. The bits are then queued into an eight-bit register for parallel readout from the VALUE register.

It is possible to enable bias correction in the CONFIG register. This will result in slower value generation, but will ensure a statistically uniform distribution of the random values.

230

NOR

²⁰ Valid range -90 to -30 dBm

6.13.2 Speed

The time needed to generate one random byte of data is unpredictable, and may vary from one byte to the next. This is especially true when bias correction is enabled.

6.13.3 Registers

Base address	Peripheral	Instance	Description	Configuration
0x4000D000	RNG	RNG	Random number generator	

Table 64: Instances

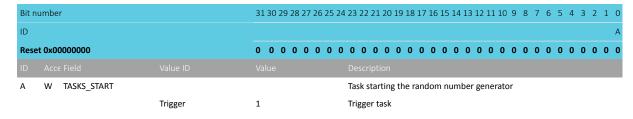
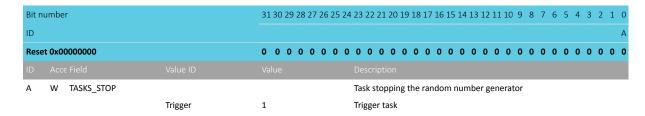

Register	Offset	Description
TASKS_START	0x000	Task starting the random number generator
TASKS_STOP	0x004	Task stopping the random number generator
EVENTS_VALRDY	0x100	Event being generated for every new random number written to the VALUE register
SHORTS	0x200	Shortcuts between local events and tasks
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt
CONFIG	0x504	Configuration register
VALUE	0x508	Output random number

Table 65: Register overview

6.13.3.1 TASKS_START

Address offset: 0x000


Task starting the random number generator

6.13.3.2 TASKS STOP

Address offset: 0x004

Task stopping the random number generator

6.13.3.3 EVENTS VALRDY

Address offset: 0x100

Event being generated for every new random number written to the VALUE register

Bit number		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			A
Reset 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A RW EVENTS_VALRDY			Event being generated for every new random number
			written to the VALUE register
	NotGenerated	0	Event not generated
	Generated	1	Event generated

6.13.3.4 SHORTS

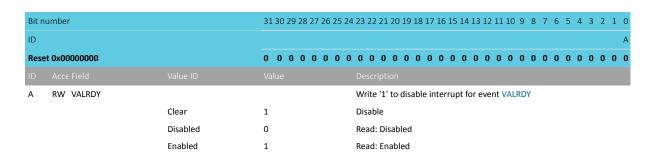
Address offset: 0x200

Shortcuts between local events and tasks

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW VALRDY_STOP			Shortcut between event VALRDY and task STOP
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut

6.13.3.5 INTENSET

Address offset: 0x304

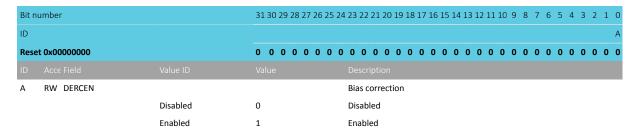

Enable interrupt

Bit number	31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		А
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		Description
A RW VALRDY		Write '1' to enable interrupt for event VALRDY
Set	1	Enable
Disabled	0	Read: Disabled
Enabled	1	Read: Enabled

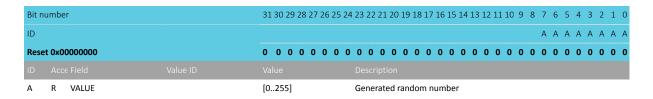
6.13.3.6 INTENCLR

Address offset: 0x308

Disable interrupt



6.13.3.7 CONFIG


Address offset: 0x504 Configuration register

6.13.3.8 VALUE

Address offset: 0x508

Output random number

6.13.4 Electrical specification

6.13.4.1 RNG Electrical Specification

Symbol	Description	Min.	Тур.	Max.	Units
t _{RNG,START}	Time from setting the START task to generation begins.		128		μs
	This is a one-time delay on START signal and does not apply				
	between samples.				
t _{RNG,RAW}	Run time per byte without bias correction. Uniform		30		μs
	distribution of 0 and 1 is not guaranteed.				
t _{RNG,BC}	Run time per byte with bias correction. Uniform distribution		120		μs
	of 0 and 1 is guaranteed. Time to generate a byte cannot be				
	guaranteed.				

6.14 RTC — Real-time counter

The Real-time counter (RTC) module provides a generic, low power timer on the low-frequency clock source (LFCLK).

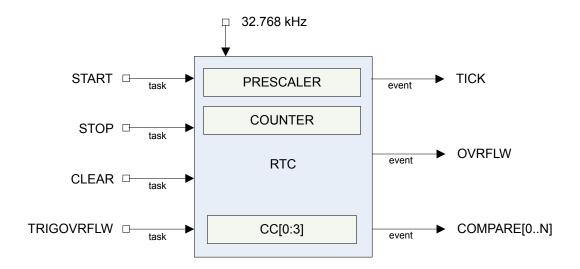


Figure 79: RTC block schematic

The RTC module features a 24-bit COUNTER, a 12-bit (1/X) prescaler, capture/compare registers, and a tick event generator for low power, tickless RTOS implementation.

6.14.1 Clock source

The RTC will run off the LFCLK.

The COUNTER resolution will therefore be 30.517 μ s. Depending on the source, the RTC is able to run while the HFCLK is OFF and PCLK16M is not available.

The software has to explicitely start LFCLK before using the RTC.

See CLOCK — Clock control on page 72 for more information about clock sources.

6.14.2 Resolution versus overflow and the PRESCALER

Counter increment frequency:

```
f<sub>RTC</sub> [kHz] = 32.768 / (PRESCALER + 1 )
```

The PRESCALER register is read/write when the RTC is stopped. The PRESCALER register is read-only once the RTC is STARTed. Writing to the PRESCALER register when the RTC is started has no effect.

The PRESCALER is restarted on START, CLEAR and TRIGOVRFLW, that is, the prescaler value is latched to an internal register (<<PRESC>>) on these tasks.

Examples:

1. Desired COUNTER frequency 100 Hz (10 ms counter period)

```
PRESCALER = round(32.768 kHz / 100 Hz) - 1 = 327
```

 $f_{RTC} = 99.9 \text{ Hz}$

10009.576 μs counter period

2. Desired COUNTER frequency 8 Hz (125 ms counter period)

PRESCALER = round(32.768 kHz / 8 Hz)
$$- 1 = 4095$$

$$f_{RTC} = 8 Hz$$

125 ms counter period

Prescaler	Counter resolution	Overflow
0	30.517 μs	512 seconds
2 ⁸ -1	7812.5 μs	131072 seconds
2 ¹² -1	125 ms	582.542 hours

Table 66: RTC resolution versus overflow

6.14.3 COUNTER register

The COUNTER increments on LFCLK when the internal PRESCALER register (<<PRESC>>) is 0x00. <<PRESC>> is reloaded from the PRESCALER register. If enabled, the TICK event occurs on each increment of the COUNTER. The TICK event is disabled by default.

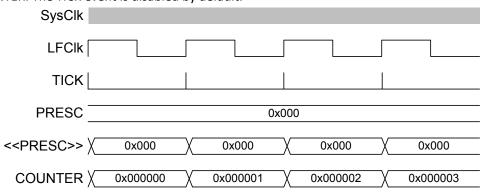


Figure 80: Timing diagram - COUNTER_PRESCALER_0

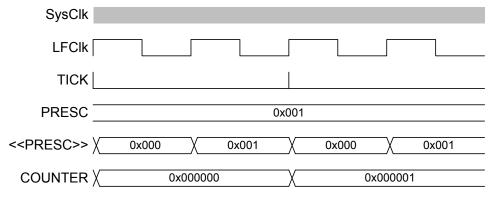


Figure 81: Timing diagram - COUNTER_PRESCALER_1

6.14.4 Overflow features

The TRIGOVRFLW task sets the COUNTER value to 0xFFFFF0 to allow SW test of the overflow condition.

OVRFLW occurs when COUNTER overflows from 0xFFFFFF to 0.

Important: The OVRFLW event is disabled by default.

6.14.5 TICK event

The TICK event enables low power "tick-less" RTOS implementation as it optionally provides a regular interrupt source for a RTOS without the need to use the $ARM^{\$}$ SysTick feature.

Using the RTC TICK event rather than the SysTick allows the CPU to be powered down while still keeping RTOS scheduling active.

Important: The TICK event is disabled by default.

6.14.6 Event control feature

To optimize RTC power consumption, events in the RTC can be individually disabled to prevent PCLK16M and HFCLK being requested when those events are triggered. This is managed using the EVTEN register.

For example, if the TICK event is not required for an application, this event should be disabled as it is frequently occurring and may increase power consumption if HFCLK otherwise could be powered down for long durations.

This means that the RTC implements a slightly different task and event system compared to the standard system described in Peripheral interface on page 88. The RTC task and event system is illustrated in Tasks, events and interrupts in the RTC on page 236.

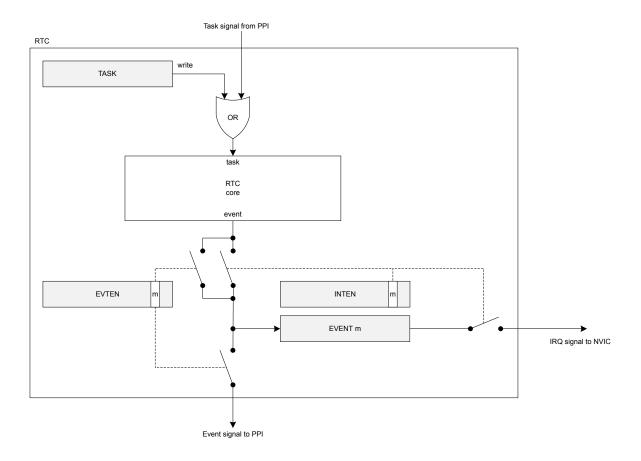


Figure 82: Tasks, events and interrupts in the RTC

6.14.7 Compare feature

There are a number of Compare registers.

For more information, see Registers on page 241.

When setting a compare register, the following behavior of the RTC compare event should be noted:

• If a CC register value is 0 when a CLEAR task is set, this will not trigger a COMPARE event.

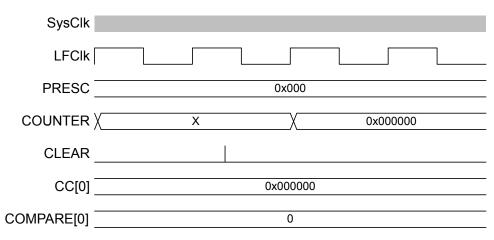


Figure 83: Timing diagram - COMPARE_CLEAR

• If a CC register is N and the COUNTER value is N when the START task is set, this will not trigger a COMPARE event.

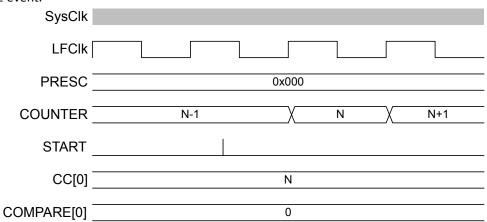


Figure 84: Timing diagram - COMPARE START

• COMPARE occurs when a CC register is N and the COUNTER value transitions from N-1 to N.

Figure 85: Timing diagram - COMPARE

• If the COUNTER is N, writing N+2 to a CC register is guaranteed to trigger a COMPARE event at N+2.

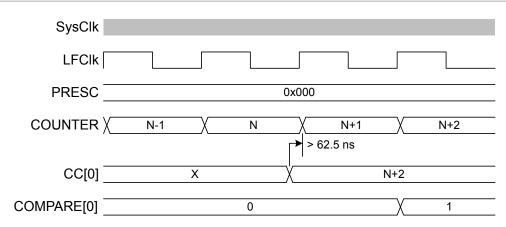


Figure 86: Timing diagram - COMPARE_N+2

• If the COUNTER is N, writing N or N+1 to a CC register may not trigger a COMPARE event.

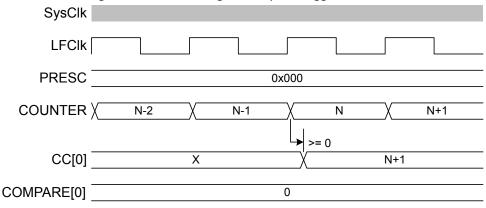


Figure 87: Timing diagram - COMPARE N+1

• If the COUNTER is N and the current CC register value is N+1 or N+2 when a new CC value is written, a match may trigger on the previous CC value before the new value takes effect. If the current CC value greater than N+2 when the new value is written, there will be no event due to the old value.

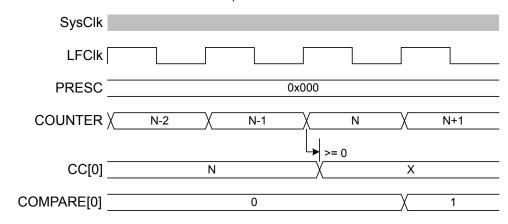


Figure 88: Timing diagram - COMPARE_N-1

6.14.8 TASK and EVENT jitter/delay

Jitter or delay in the RTC is due to the peripheral clock being a low frequency clock (LFCLK) which is not synchronous to the faster PCLK16M.

Registers in the peripheral interface, part of the PCLK16M domain, have a set of mirrored registers in the LFCLK domain. For example, the COUNTER value accessible from the CPU is in the PCLK16M domain and is latched on read from an internal register called COUNTER in the LFCLK domain. COUNTER is the register which is actually modified each time the RTC ticks. These registers must be synchronised between clock domains (PCLK16M and LFCLK).

The following is a summary of the jitter introduced on tasks and events. Figures illustrating jitter follow.

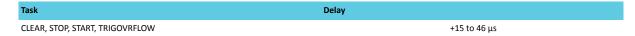


Table 67: RTC jitter magnitudes on tasks

Operation/Function	Jitter
START to COUNTER increment	+/- 15 μs
COMPARE to COMPARE ²¹	+/- 62.5 ns

Table 68: RTC jitter magnitudes on events

1. CLEAR and STOP (and TRIGOVRFLW; not shown) will be delayed as long as it takes for the peripheral to clock a falling edge and rising of the LFCLK. This is between 15.2585 μ s and 45.7755 μ s – rounded to 15 μ s and 46 μ s for the remainder of the section.

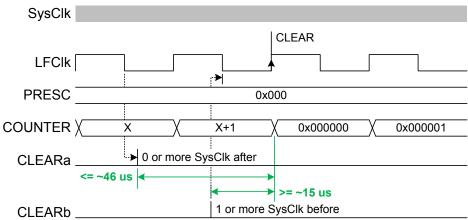


Figure 89: Timing diagram - DELAY_CLEAR

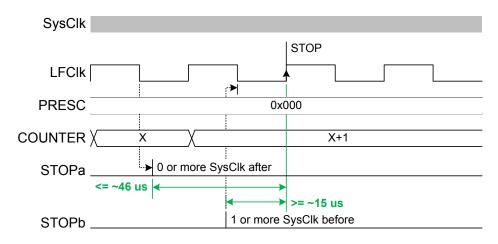


Figure 90: Timing diagram - DELAY_STOP

2. The START task will start the RTC. Assuming that the LFCLK was previously running and stable, the first increment of COUNTER (and instance of TICK event) will be typically after 30.5 μ s +/-15 μ s. In some cases, in particular if the RTC is STARTed before the LFCLK is running, that timing can be up to ~250 μ s. The software should therefore wait for the first TICK if it has to make sure the RTC is running.

Note: 32.768 kHz clock jitter is additional to the numbers provided above.

NORDIC*

Assumes RTC runs continuously between these events.

Sending a TRIGOVRFLW task sets the COUNTER to a value close to overflow. However, since the update of COUNTER relies on a stable LFCLK, sending this task while LFCLK is not running will start LFCLK, but the update will then be delayed by the same amount of time of up to ~250 us. The figures show the smallest and largest delays to on the START task which appears as a +/-15 μ s jitter on the first COUNTER increment.

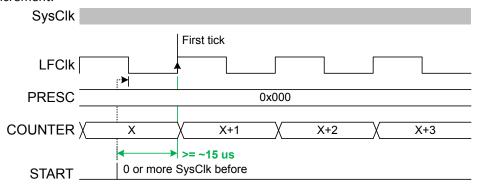


Figure 91: Timing diagram - JITTER START-

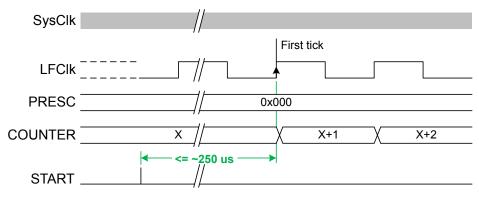


Figure 92: Timing diagram - JITTER START+

6.14.9 Reading the COUNTER register

To read the COUNTER register, the internal <<COUNTER>> value is sampled.

To ensure that the <<COUNTER>> is safely sampled (considering an LFCLK transition may occur during a read), the CPU and core memory bus are halted for three cycles by lowering the core PREADY signal. The Read takes the CPU 2 cycles in addition resulting in the COUNTER register read taking a fixed five PCLK16M clock cycles.

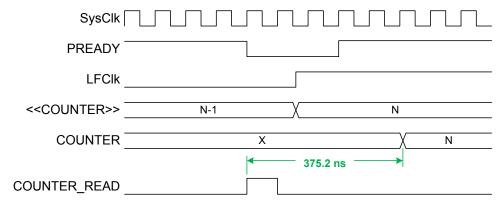


Figure 93: Timing diagram - COUNTER_READ

6.14.10 Registers

Base address	Peripheral	Instance	Description	Configuration
0x4000B000	RTC	RTC0	Real-time counter 0	CC[02] implemented, CC[3] not
				implemented
0x40011000	RTC	RTC1	Real-time counter 1	CC[03] implemented

Table 69: Instances

Register	Offset	Description
TASKS_START	0x000	Start RTC COUNTER
TASKS_STOP	0x004	Stop RTC COUNTER
TASKS_CLEAR	0x008	Clear RTC COUNTER
TASKS_TRIGOVRFLW	0x00C	Set COUNTER to 0xFFFFF0
EVENTS_TICK	0x100	Event on COUNTER increment
EVENTS_OVRFLW	0x104	Event on COUNTER overflow
EVENTS_COMPARE[0]	0x140	Compare event on CC[0] match
EVENTS_COMPARE[1]	0x144	Compare event on CC[1] match
EVENTS_COMPARE[2]	0x148	Compare event on CC[2] match
EVENTS_COMPARE[3]	0x14C	Compare event on CC[3] match
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt
EVTEN	0x340	Enable or disable event routing
EVTENSET	0x344	Enable event routing
EVTENCLR	0x348	Disable event routing
COUNTER	0x504	Current COUNTER value
PRESCALER	0x508	12 bit prescaler for COUNTER frequency (32768/(PRESCALER+1)). Must be written when RTC is
		stopped
CC[0]	0x540	Compare register 0
CC[1]	0x544	Compare register 1
CC[2]	0x548	Compare register 2
CC[3]	0x54C	Compare register 3

Table 70: Register overview

6.14.10.1 TASKS_START

Address offset: 0x000 Start RTC COUNTER

Bit n	umber		31 30 29 28 27 2	6 25 2	4 23	22 2	21 20	19 1	8 17	' 16 1	L5 1	4 13	12	11 1	0 9	8	7	6	5	4 3	2	1	0
ID																							Α
Rese	et 0x00000000		0 0 0 0 0 0	0 0	0	0	0 0	0 (0	0	0 0	0	0	0 (0	0	0	0	0	0 (0	0	0
ID																							
Α	W TASKS_START				Sta	rt R	тс сс	DUN	ΓER														
		Trigger	1		Trig	ger	task																

6.14.10.2 TASKS_STOP

Address offset: 0x004 Stop RTC COUNTER

Bit nur	mber		31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Reset	0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	W TASKS_STOP			Stop RTC COUNTER
		Trigger	1	Trigger task

6.14.10.3 TASKS_CLEAR

Address offset: 0x008 Clear RTC COUNTER

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	W TASKS_CLEAR			Clear RTC COUNTER
		Trigger	1	Trigger task

6.14.10.4 TASKS_TRIGOVRFLW

Address offset: 0x00C

Set COUNTER to 0xFFFFF0

Bit n	number		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	W TASKS_TRIGOVRFLW			Set COUNTER to 0xFFFFF0
		Trigger	1	Trigger task

6.14.10.5 EVENTS_TICK

Address offset: 0x100

Event on COUNTER increment

Bit number		31 30 29 28 27 26 25	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			А
Reset 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A RW EVENTS_TICK			Event on COUNTER increment
	NotGenerated	0	Event not generated
	Generated	1	Event generated

6.14.10.6 EVENTS_OVRFLW

Address offset: 0x104

Event on COUNTER overflow

Bit number		31 30 29 28 27 26 25 24	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			A
Reset 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Va			Description
A RW EVENTS_OVRFLW			Event on COUNTER overflow
No	otGenerated	0	Event not generated
Ge	enerated	1	Event generated

6.14.10.7 EVENTS_COMPARE[n] (n=0..3)

Address offset: $0x140 + (n \times 0x4)$ Compare event on CC[n] match

Bit number		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			A
Reset 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A RW EVENTS_COMPARE			Compare event on CC[n] match
	NotGenerated	0	Event not generated
	Generated	1	Event generated

6.14.10.8 INTENSET

Address offset: 0x304

Enable interrupt

Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				F E D C B A
Rese	t 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW TICK			Write '1' to enable interrupt for event TICK
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
В	RW OVRFLW			Write '1' to enable interrupt for event OVRFLW
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
C-F	RW COMPARE[i] (i=03)			Write '1' to enable interrupt for event COMPARE[i]
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

6.14.10.9 INTENCLR

Address offset: 0x308

Disable interrupt

Bit r	umber		31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				F E D C B A
Res	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Α	RW TICK			Write '1' to disable interrupt for event TICK
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
В	RW OVRFLW			Write '1' to disable interrupt for event OVRFLW
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
C-F	RW COMPARE[i] (i=03)			Write '1' to disable interrupt for event COMPARE[i]
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

6.14.10.10 EVTEN

Address offset: 0x340

Enable or disable event routing

Bit number		31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			F E D C B A
Reset 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A RW TICK			Enable or disable event routing for event TICK
	Disabled	0	Disable
	Enabled	1	Disable
B RW OVRFLW			Enable or disable event routing for event OVRFLW
	Disabled	0	Disable
	Enabled	1	Disable
C-F RW COMPARE[i] (i=03)			Enable or disable event routing for event COMPARE[i]
	Disabled	0	Disable
	Enabled	1	Disable

6.14.10.11 EVTENSET

Address offset: 0x344 Enable event routing

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F E D C B A
$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$
Description
Write '1' to enable event routing for event TICK
Read: Disabled
Read: Enabled
Enable
Write '1' to enable event routing for event OVRFLW
Read: Disabled
Read: Enabled
Enable
0

Bit number	31 30 29 28 27 26 25	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		F E D C B A
Reset 0x00000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		Description
C-F RW COMPARE[i] (i=03)		Write '1' to enable event routing for event COMPARE[i]
Disabled	0	Read: Disabled
Enabled	1	Read: Enabled
Set	1	Enable

6.14.10.12 EVTENCLR

Address offset: 0x348

Disable event routing

Bit r	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				F E D C B A
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW TICK			Write '1' to disable event routing for event TICK
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
		Clear	1	Disable
В	RW OVRFLW			Write '1' to disable event routing for event OVRFLW
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
		Clear	1	Disable
C-F	RW COMPARE[i] (i=03)			Write '1' to disable event routing for event COMPARE[i]
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
		Clear	1	Disable

6.14.10.13 COUNTER

Address offset: 0x504

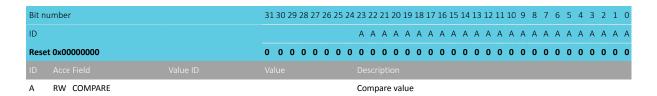
Current COUNTER value

A R COUNTER	Counter value
ID Acce Field	
Reset 0x00000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID	A A A A A A A A A A A A A A A A A A A
Bit number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.14.10.14 PRESCALER

Address offset: 0x508

12 bit prescaler for COUNTER frequency (32768/(PRESCALER+1)). Must be written when RTC is stopped


Α	RW PRESCALER		Prescaler value
ID			
Rese	et 0x00000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID			A A A A A A A A A A A A A A A A A A A
Bit r	umber	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

6.14.10.15 CC[n] (n=0..3)

Address offset: $0x540 + (n \times 0x4)$

Compare register n

6.14.11 Electrical specification

6.15 SPI — Serial peripheral interface master

The SPI master provides a simple CPU interface which includes a TXD register for sending data and an RXD register for receiving data. This section is added for legacy support for now.

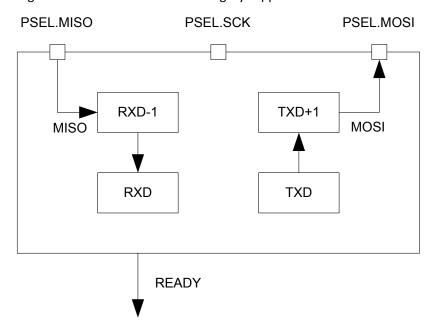


Figure 94: SPI master

RXD-1 and TXD+1 illustrate the double buffered version of RXD and TXD respectively.

6.15.1 Functional description

The TXD and RXD registers are double-buffered to enable some degree of uninterrupted data flow in and out of the SPI master.

The SPI master does not implement support for chip select directly. Therefore, the CPU must use available GPIOs to select the correct slave and control this independently of the SPI master. The SPI master supports SPI modes 0 through 3.

Mode	Clock polarity	Clock phase
	CPOL	СРНА
SPI_MODE0	0 (Leading)	0 (Active high)
SPI_MODE1	0 (Leading)	1 (Active low)
SPI_MODE2	1 (Trailing)	0 (Active high)
SPI_MODE3	1 (Trailing)	1 (Active low)

Table 71: SPI modes

6.15.1.1 SPI master mode pin configuration

The different signals SCK, MOSI, and MISO associated with the SPI master are mapped to physical pins.

This mapping is according to the configuration specified in the PSEL.SCK, PSEL.MOSI, and PSEL.MISO registers respectively. If the CONNECT field of a PSEL.xxx register is set to Disconnected, the associated SPI master signal is not connected to any physical pin. The PSEL.SCK, PSEL.MOSI, and PSEL.MISO registers and their configurations are only used as long as the SPI master is enabled, and retained only as long as the device is in ON mode. PSEL.SCK, PSEL.MOSI, and PSEL.MISO must only be configured when the SPI master is disabled.

To secure correct behavior in the SPI, the pins used by the SPI must be configured in the GPIO peripheral as described in GPIO configuration on page 247 prior to enabling the SPI. The SCK must always be connected to a pin, and that pin's input buffer must always be connected for the SPI to work. This configuration must be retained in the GPIO for the selected IOs as long as the SPI is enabled.

Only one peripheral can be assigned to drive a particular GPIO pin at a time, failing to do so may result in unpredictable behavior.

SPI master signal	SPI master pin	Direction	Output value
SCK	As specified in PSEL.SCK	Output	Same as CONFIG.CPOL
MOSI	As specified in PSEL.MOSI	Output	0
MISO	As specified in PSEL.MISO	Input	Not applicable

Table 72: GPIO configuration

6.15.1.2 Shared resources

The SPI shares registers and other resources with other peripherals that have the same ID as the SPI. Therefore, the user must disable all peripherals that have the same ID as the SPI before the SPI can be configured and used.

Disabling a peripheral that has the same ID as the SPI will not reset any of the registers that are shared with the SPI. It is therefore important to configure all relevant SPI registers explicitly to secure that it operates correctly.

See the Instantiation table in Instantiation on page 20 for details on peripherals and their IDs.

6.15.1.3 SPI master transaction sequence

An SPI master transaction is started by writing the first byte, which is to be transmitted by the SPI master, to the TXD register.

Since the transmitter is double buffered, the second byte can be written to the TXD register immediately after the first one. The SPI master will then send these bytes in the order they are written to the TXD register.

The SPI master is a synchronous interface, and for every byte that is sent, a different byte will be received at the same time; this is illustrated in SPI master transaction on page 248. Bytes that are received will be moved to the RXD register where the CPU can extract them by reading the register. The RXD register is double buffered in the same way as the TXD register, and a second byte can therefore be received at the

same time as the first byte is being extracted from RXD by the CPU. The SPI master will generate a READY event every time a new byte is moved to the RXD register. The double buffered byte will be moved from RXD-1 to RXD as soon as the first byte is extracted from RXD. The SPI master will stop when there are no more bytes to send in TXD and TXD+1.

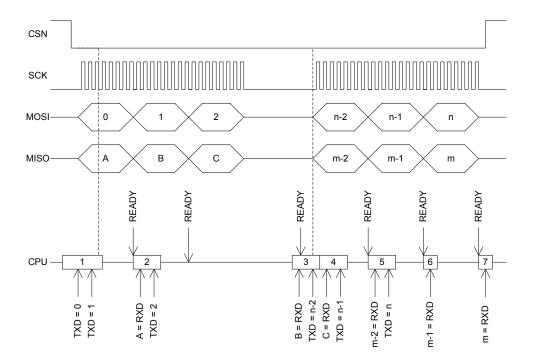


Figure 95: SPI master transaction

The READY event of the third byte transaction is delayed until B is extracted from RXD in occurrence number 3 on the horizontal lifeline. The reason for this is that the third event is generated first when C is moved from RXD-1 to RXD after B is read.

The SPI master will move the incoming byte to the RXD register after a short delay following the SCK clock period of the last bit in the byte. This also means that the READY event will be delayed accordingly, see SPI master transaction on page 249. Therefore, it is important that you always clear the READY event, even if the RXD register and the data that is being received is not used.

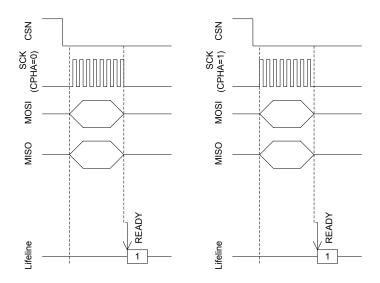


Figure 96: SPI master transaction

6.15.2 Registers

Base address	Peripheral	Instance	Description	Configuration	
0x40003000	SPI	SPI0	SPI master 0		Deprecated
0x40004000	SPI	SPI1	SPI master 1		Deprecated

Table 73: Instances

Register	Offset	Description
EVENTS_READY	0x108	TXD byte sent and RXD byte received
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt
ENABLE	0x500	Enable SPI
PSEL.SCK	0x508	Pin select for SCK
PSEL.MOSI	0x50C	Pin select for MOSI signal
PSEL.MISO	0x510	Pin select for MISO signal
RXD	0x518	RXD register
TXD	0x51C	TXD register
FREQUENCY	0x524	SPI frequency. Accuracy depends on the HFCLK source selected.
CONFIG	0x554	Configuration register

Table 74: Register overview

6.15.2.1 EVENTS_READY

Address offset: 0x108

TXD byte sent and RXD byte received

Bit number		31 30 29 28 27 26 25 24	2 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0
ID			A
Reset 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Va			Description
A RW EVENTS_READY			TXD byte sent and RXD byte received
N	otGenerated	0	Event not generated
G	enerated	1	Event generated

6.15.2.2 INTENSET

Address offset: 0x304 Enable interrupt

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW READY			Write '1' to enable interrupt for event READY
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

6.15.2.3 INTENCLR

Address offset: 0x308

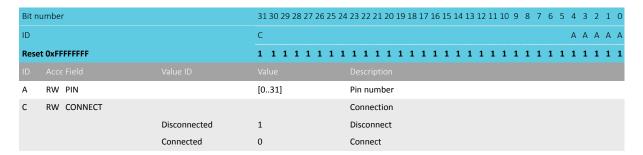
Disable interrupt

Bit number	31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		А
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		Description
A RW READY		Write '1' to disable interrupt for event READY
Clear	1	Disable
Disabled	0	Read: Disabled
Enabled	1	Read: Enabled

6.15.2.4 ENABLE

Address offset: 0x500

Enable SPI


Bit number		31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			АААА
Reset 0x00000000		0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A RW ENABLE			Enable or disable SPI
	Disabled	0	Disable SPI
	Enabled	1	Enable SPI

6.15.2.5 PSEL.SCK

Address offset: 0x508

Pin select for SCK

6.15.2.6 PSEL.MOSI

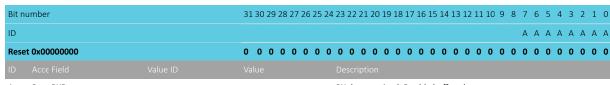
Address offset: 0x50C

Pin select for MOSI signal

Bit no	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	АААА
Rese	t OxFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				Description
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect

6.15.2.7 PSEL.MISO

Address offset: 0x510

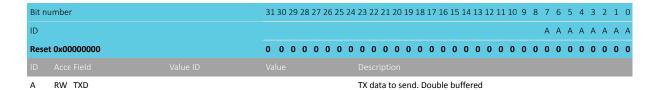

Pin select for MISO signal

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	АААА
Rese	t OxFFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				Description
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect

6.15.2.8 RXD

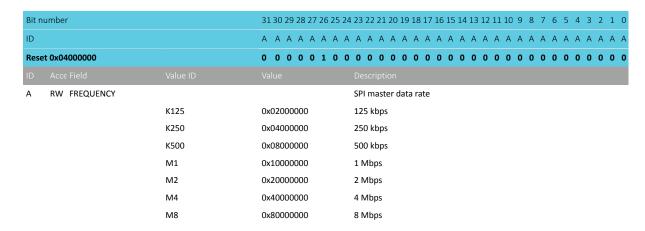
Address offset: 0x518

RXD register


A R RXD RX data received. Double buffered

6.15.2.9 TXD

Address offset: 0x51C


TXD register

6.15.2.10 FREQUENCY

Address offset: 0x524

SPI frequency. Accuracy depends on the HFCLK source selected.

6.15.2.11 CONFIG

Address offset: 0x554 Configuration register

Bit r	number		31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				СВА
Res	et 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW ORDER			Bit order
		MsbFirst	0	Most significant bit shifted out first
		LsbFirst	1	Least significant bit shifted out first
В	RW CPHA			Serial clock (SCK) phase
		Leading	0	Sample on leading edge of clock, shift serial data on trailing
				edge
		Trailing	1	Sample on trailing edge of clock, shift serial data on leading
				edge
С	RW CPOL			Serial clock (SCK) polarity
		ActiveHigh	0	Active high
		ActiveLow	1	Active low

6.15.3 Electrical specification

6.15.3.1 SPI master interface electrical specifications

Symbol	Description	Min.	Тур.	Max.	Units
f _{SPI}	Bit rates for SPI ²²			8 ²³	Mbps
t _{SPI,START}	Time from writing TXD register to transmission started		1		μs

6.15.3.2 Serial Peripheral Interface (SPI) Master timing specifications

Symbol	Description	Mir	1.	Тур.	Max.	Units
t _{SPI,CSCK}	SCK period	125	5			ns
$t_{SPI,RSCK,LD}$	SCK rise time, standard drive ²⁴				t _{RF,25pF}	
t _{SPI,RSCK,HD}	SCK rise time, high drive ²⁴				t _{HRF,25pF}	
$t_{SPI,FSCK,LD}$	SCK fall time, standard drive ²⁴				t _{RF,25pF}	
t _{SPI,FSCK,HD}	SCK fall time, high drive ²⁴				t _{HRF,25pF}	
t _{SPI,WHSCK}	SCK high time ²⁴	(t _{cs}	_{CK} /2)			
		- t _F	RSCK			
$t_{\text{SPI,WLSCK}}$	SCK low time ²⁴	(t _{CS}	_{CK} /2)			
		- t _F	SCK			
t _{SPI,SUMI}	MISO to CLK edge setup time	19				ns
t _{SPI,HMI}	CLK edge to MISO hold time	18				ns
t _{SPI,VMO}	CLK edge to MOSI valid				59	ns
t _{SPI,HMO}	MOSI hold time after CLK edge	20				ns

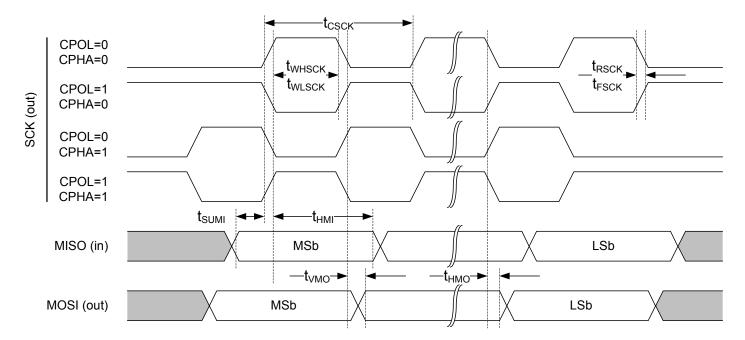


Figure 97: SPI master timing diagram

NORDIC

High bit rates may require GPIOs to be set as High Drive, see GPIO chapter for more details.

The actual maximum data rate depends on the slave's CLK to MISO and MOSI setup and hold timings.

²⁴ At 25pF load, including GPIO capacitance, see GPIO spec.

6.16 SPIM — Serial peripheral interface master with EasyDMA

The SPI master can communicate with multiple SPI slaves using individual chip select signals for each slave.

Listed here are the main features for the SPIM

- EasyDMA direct transfer to/from RAM
- SPI mode 0-3
- Individual selection of I/O pins

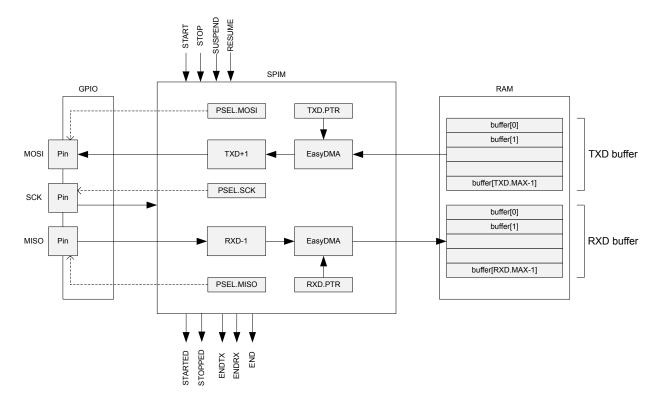


Figure 98: SPIM — SPI master with EasyDMA

6.16.1 SPI master transaction sequence

An SPI master transaction is started by triggering the START task. When started, a number of bytes will be transmitted/received on MOSI/MISO.

The following figure illustrates an SPI master transaction:

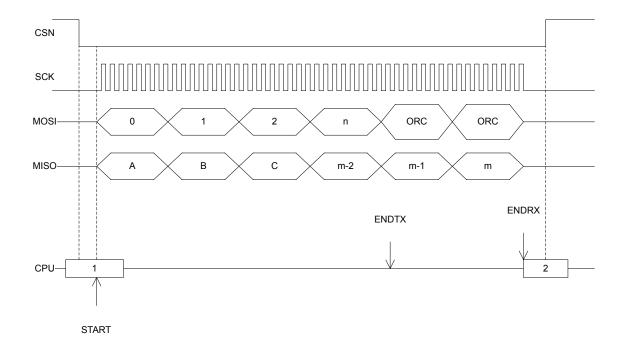


Figure 99: SPI master transaction

The ENDTX is generated when all bytes in buffer TXD.PTR on page 264 are transmitted. The number of bytes in the transmit buffer is specified in register TXD.MAXCNT on page 264. The ENDRX event will be generated when buffer RXD.PTR on page 263 is full, that is when the number of bytes specified in register RXD.MAXCNT on page 263 have been received. The transaction stops automatically after all bytes have been transmitted/received. When the maximum number of bytes in receive buffer is larger than the number of bytes in the transmit buffer, the contents of register ORC on page 265 will be transmitted after the last byte in the transmit buffer has been transmitted.

The END event will be generated after both the ENDRX and ENDTX events have been generated.

The SPI master can be stopped in the middle of a transaction by triggering the STOP task. When triggering the STOP task the SPIM will complete the transmission/reception of the current byte before stopping. A STOPPED event is generated when the SPI master has stopped.

If the ENDTX event has not already been generated when the SPI master has come to a stop, the ENDTX event will be generated even if all bytes in the buffer TXD.PTR on page 264 have not been transmitted.

If the ENDRX event has not already been generated when the SPI master has come to a stop, the ENDRX event will be generated even if the buffer RXD.PTR on page 263 is not full.

A transaction can be suspended and resumed using the SUSPEND and RESUME tasks, receptively. When the SUSPEND task is triggered the SPI master will complete transmitting and receiving the current ongoing byte before it is suspended.

6.16.2 Pin configuration

The SCK, MOSI, and MISO signals associated with the SPIM are mapped to physical pins according to the configuration specified in the PSEL.n registers.

The contents of registers PSEL.SCK on page 261, PSEL.MOSI on page 262 and PSEL.MISO on page 262 are only used when the SPIM is enabled and retained only as long as the device is in System ON mode. The PSEL.n registers can only be configured when the SPIM is disabled. Enabling/disabling is done using register ENABLE on page 261.

NORDIC

To ensure correct behavior, the pins used by the SPIM must be configured in the GPIO peripheral as described in GPIO configuration on page 256 before the SPIM is enabled.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in unpredictable behavior.

SPI master signal	SPI master pin	Direction	Output value	Comments
SCK	As specified in PSEL.SCK	Output	Same as CONFIG.CPOL	
	on page 261			
MOSI	As specified in PSEL.MOS	l Output	0	
	on page 262			
MISO	As specified in PSEL.MISC	Input	Not applicable	
	on page 262			

Table 75: GPIO configuration

SPIM does not support automatic control of CSN. The available GPIO pins need to be used to control CSN directly.

The SPIM supports SPI modes 0 through 3. The clock polarity (CPOL) and the clock phase (CPHA) are configured in register CONFIG on page 265.

Mode	Clock polarity	Clock phase
	CPOL	СРНА
SPI_MODE0	0 (Active High)	0 (Leading)
SPI_MODE1	0 (Active High)	1 (Trailing)
SPI_MODE2	1 (Active Low)	0 (Leading)
SPI_MODE3	1 (Active Low)	1 (Trailing)

Table 76: SPI modes

6.16.3 EasyDMA

The SPIM implements EasyDMA for accessing RAM without CPU involvement.

The SPIM peripheral implements the following EasyDMA channels:

Channel	Туре	Register Cluster
TXD	READER	TXD
RXD	WRITER	RXD

Table 77: SPIM EasyDMA Channels

For detailed information regarding the use of EasyDMA, see EasyDMA on page 39.

The .PTR and .MAXCNT registers are double-buffered. They can be updated and prepared for the next transmission immediately after having received the STARTED event.

The SPI master will automatically stop transmitting after TXD.MAXCNT bytes have been transmitted and RXD.MAXCNT bytes have been received. If RXD.MAXCNT is larger than TXD.MAXCNT, the remaining transmitted bytes will contain the value defined in the ORC register. If TXD.MAXCNT is larger than RXD.MAXCNT, the superfluous received bytes will be discarded.

The ENDRX/ENDTX event indicate that EasyDMA has finished accessing respectively the RX/TX buffer in RAM. The END event gets generated when both RX and TX are finished accessing the buffers in RAM.

If several AHB bus masters try to access the same AHB slave at the same time, AHB bus congestion might occur. Data loss will occur in this event.

6.16.4 Low power

When putting the system in low power and the peripheral is not needed, lowest possible power consumption is achieved by stopping, and then disabling the peripheral.

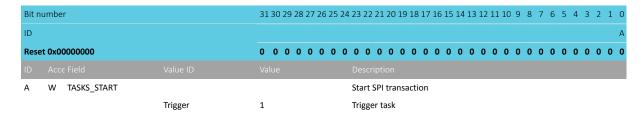
The STOP task may not be always needed (the peripheral might already be stopped), but if it is sent, software shall wait until the STOPPED event was received as a response before disabling the peripheral through the ENABLE register.

6.16.5 Registers

Base address	Peripheral	Instance	Description	Configuration
0x40003000	SPIM	SPIM0	SPI master 0	
0x40004000	SPIM	SPIM1	SPI master 1	

Table 78: Instances

Register	Offset	Description
TASKS_START	0x010	Start SPI transaction
TASKS_STOP	0x014	Stop SPI transaction
TASKS_SUSPEND	0x01C	Suspend SPI transaction
TASKS_RESUME	0x020	Resume SPI transaction
EVENTS_STOPPED	0x104	SPI transaction has stopped
EVENTS_ENDRX	0x110	End of RXD buffer reached
EVENTS_END	0x118	End of RXD buffer and TXD buffer reached
EVENTS_ENDTX	0x120	End of TXD buffer reached
EVENTS_STARTED	0x14C	Transaction started
SHORTS	0x200	Shortcuts between local events and tasks
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt
ENABLE	0x500	Enable SPIM
PSEL.SCK	0x508	Pin select for SCK
PSEL.MOSI	0x50C	Pin select for MOSI signal
PSEL.MISO	0x510	Pin select for MISO signal
FREQUENCY	0x524	SPI frequency. Accuracy depends on the HFCLK source selected.
RXD.PTR	0x534	Data pointer
RXD.MAXCNT	0x538	Maximum number of bytes in receive buffer
RXD.AMOUNT	0x53C	Number of bytes transferred in the last transaction
RXD.LIST	0x540	EasyDMA list type
TXD.PTR	0x544	Data pointer
TXD.MAXCNT	0x548	Number of bytes in transmit buffer
TXD.AMOUNT	0x54C	Number of bytes transferred in the last transaction
TXD.LIST	0x550	EasyDMA list type
CONFIG	0x554	Configuration register
ORC	0x5C0	Byte transmitted after TXD.MAXCNT bytes have been transmitted in the case when
		RXD.MAXCNT is greater than TXD.MAXCNT


Table 79: Register overview

6.16.5.1 TASKS_START

Address offset: 0x010

Start SPI transaction

6.16.5.2 TASKS_STOP

Address offset: 0x014 Stop SPI transaction

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	W TASKS_STOP			Stop SPI transaction
		Trigger	1	Trigger task

6.16.5.3 TASKS_SUSPEND

Address offset: 0x01C Suspend SPI transaction

Bit n	number		31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	W TASKS_SUSPEND			Suspend SPI transaction
		Trigger	1	Trigger task

6.16.5.4 TASKS_RESUME

Address offset: 0x020 Resume SPI transaction

Bit n	umber		31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	et 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	W TASKS_RESUME			Resume SPI transaction
		Trigger	1	Trigger task

6.16.5.5 EVENTS_STOPPED

Address offset: 0x104

SPI transaction has stopped

Bit number		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			A
Reset 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A RW EVENTS_STOPPED			SPI transaction has stopped
	NotGenerated	0	Event not generated
	Generated	1	Event generated

6.16.5.6 EVENTS_ENDRX

Address offset: 0x110

End of RXD buffer reached

Bit n	umber		31	30	29 2	8 27	7 26	25 :	24 2	3 2	2 21	1 20	19	18 1	17 1	6 15	5 14	13	12 1	1 10	9	8	7	6 !	5 4	1 3	2	1 0
ID																												А
Rese	t 0x00000000		0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0 (0	0	0	0 (0	0	0	0	0 (0 (0	0	0 0
ID																												
Α	RW EVENTS_ENDRX								E	nd	of R	RXD	buf	fer ı	eac	hed												
		NotGenerated	0						E	ven	nt no	ot g	ene	rate	d													
		Generated	1						E	ven	nt ge	ener	rate	d														

6.16.5.7 EVENTS_END

Address offset: 0x118

End of RXD buffer and TXD buffer reached

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW EVENTS_END			End of RXD buffer and TXD buffer reached
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.16.5.8 EVENTS_ENDTX

Address offset: 0x120

End of TXD buffer reached

Bit n	umber		31	30	29	28	27	26	25	24	23	22	2 2 1	L 20	19	18	3 17	16	5 15	14	13	12	11	10	9 8	8 7	7 (6 5	5 4	1 3	2	1	0
ID																																	Α
Rese	t 0x00000000		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 () (0 () (0	0	0	0
ID																																	
Α	RW EVENTS_ENDTX										En	d c	of T	ΧD	bu	ffe	re	ach	ied														
		NotGenerated	0								Ev	ent	t no	ot g	en	era	ted																
		Generated	1								Ev	ent	t ge	ene	rat	ed																	

6.16.5.9 EVENTS_STARTED

Address offset: 0x14C
Transaction started

Bit number		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			A
Reset 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A RW EVENTS_STARTED			Transaction started
	NotGenerated	0	Event not generated
	Generated	1	Event generated

6.16.5.10 SHORTS

Address offset: 0x200

Shortcuts between local events and tasks

Bit n	umber		31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	et 0x00000000		0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW END_START			Shortcut between event END and task START
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut

6.16.5.11 INTENSET

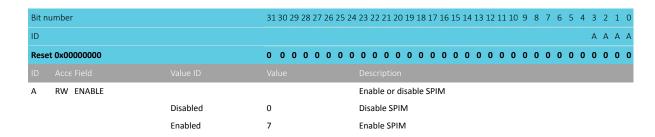
Address offset: 0x304

Enable interrupt

Bit	number		31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				E D C B A
Res	et 0x00000000		0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Α	RW STOPPED			Write '1' to enable interrupt for event STOPPED
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
В	RW ENDRX			Write '1' to enable interrupt for event ENDRX
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
С	RW END			Write '1' to enable interrupt for event END
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
D	RW ENDTX			Write '1' to enable interrupt for event ENDTX
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Ε	RW STARTED			Write '1' to enable interrupt for event STARTED
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

6.16.5.12 INTENCLR

Address offset: 0x308

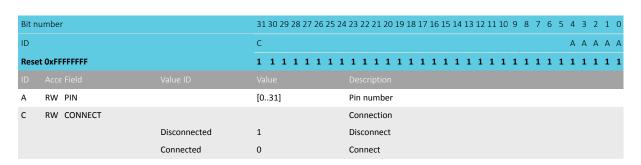

Disable interrupt

Bit number			31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				E D C B A
Reset 0x0000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A RW ST	ГОРРЕД			Write '1' to disable interrupt for event STOPPED
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
B RW EN	NDRX			Write '1' to disable interrupt for event ENDRX
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
C RW EN	ND			Write '1' to disable interrupt for event END
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
D RW EN	NDTX			Write '1' to disable interrupt for event ENDTX
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
E RW ST	TARTED			Write '1' to disable interrupt for event STARTED
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

6.16.5.13 ENABLE

Address offset: 0x500

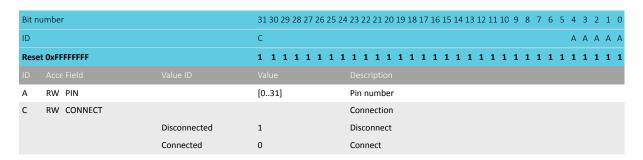
Enable SPIM



6.16.5.14 PSEL.SCK

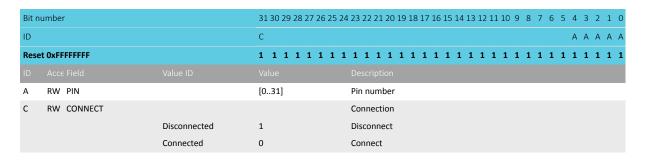
Address offset: 0x508

Pin select for SCK



6.16.5.15 PSEL.MOSI

Address offset: 0x50C


Pin select for MOSI signal

6.16.5.16 PSEL.MISO

Address offset: 0x510

Pin select for MISO signal

6.16.5.17 FREQUENCY

Address offset: 0x524

SPI frequency. Accuracy depends on the HFCLK source selected.

Bit n	umber		31 30 29 28 27 26 25 2	
ID			A A A A A A A	
Rese	et 0x04000000		0 0 0 0 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW FREQUENCY			SPI master data rate
		K125	0x02000000	125 kbps
		K250	0x04000000	250 kbps
		K500	0x0800000	500 kbps
		M1	0x10000000	1 Mbps
		M2	0x20000000	2 Mbps
		M4	0x40000000	4 Mbps
		M8	0x80000000	8 Mbps

6.16.5.18 RXD.PTR

Address offset: 0x534

Data pointer

ID	Acce Field	Value ID	Value	Description
Rese	t 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID			AAAAAA	A A A A A A A A A A A A A A A A A A A
Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: See the memory chapter for details about which memories are available for EasyDMA.

6.16.5.19 RXD.MAXCNT

Address offset: 0x538

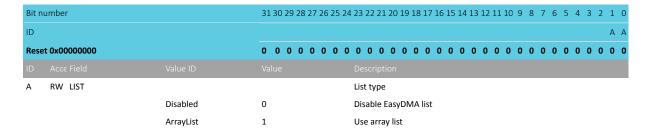
Maximum number of bytes in receive buffer

Reset 0x0000000	-															i	
Reset 0x0000000	~											•				_	
	no .	0 0 0 0 0 0 0	0 0 0 0	0 0	0 0	0	0 0	0	0 0	0	0 (0 (0 (0 0	0	0	0 0
ID							A A	Α	A A	Α	Α /	Α ,	A A	А А	Α	Α .	АА
Bit number		31 30 29 28 27 26 25 24	23 22 21 20	0 19 18	17 10	5 15	14 13	3 12 1	1 10	9	8	7 (6 !	5 4	3	2	1 0

6.16.5.20 RXD.AMOUNT

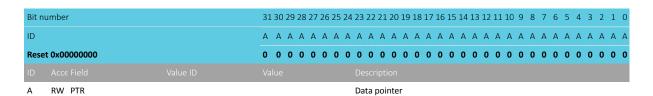
Address offset: 0x53C

Number of bytes transferred in the last transaction


A R AMOUNT	[10x7fff]	Number of bytes transferred in the last transaction
ID Acce Field		Description
Reset 0x00000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID		A A A A A A A A A A A A A A A A A A A
Bit number	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.16.5.21 RXD.LIST

Address offset: 0x540


EasyDMA list type

6.16.5.22 TXD.PTR

Address offset: 0x544

Data pointer

Note: See the memory chapter for details about which memories are available for EasyDMA.

6.16.5.23 TXD.MAXCNT

Address offset: 0x548

Number of bytes in transmit buffer

Bit n	umber	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		A A A A A A A A A A A A A A A A A A A
Rese	t 0x00000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID		Value Description
Α	RW MAXCNT	[10x7fff] Maximum number of bytes in transmit buffer

6.16.5.24 TXD.AMOUNT

Address offset: 0x54C

Number of bytes transferred in the last transaction

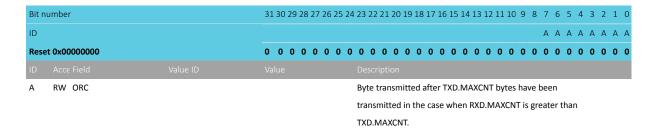
A R AMOUNT	[10x7fff] Number of bytes transferred in the last	transaction
ID Acce Field		
Reset 0x00000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
ID	ААА	A A A A A A A A A A
Bit number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11	10 9 8 7 6 5 4 3 2 1 0

6.16.5.25 TXD.LIST

Address offset: 0x550 EasyDMA list type

Bit number		31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			АА
Reset 0x00000000		0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A RW LIST			List type
	Disabled	0	Disable EasyDMA list
	ArrayList	1	Use array list

6.16.5.26 CONFIG


Address offset: 0x554 Configuration register

Bit number			31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				СВА
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Α	RW ORDER			Bit order
		MsbFirst	0	Most significant bit shifted out first
		LsbFirst	1	Least significant bit shifted out first
В	RW CPHA			Serial clock (SCK) phase
		Leading	0	Sample on leading edge of clock, shift serial data on trailing
				edge
		Trailing	1	Sample on trailing edge of clock, shift serial data on leading
				edge
С	RW CPOL			Serial clock (SCK) polarity
		ActiveHigh	0	Active high
		ActiveLow	1	Active low

6.16.5.27 ORC

Address offset: 0x5C0

Byte transmitted after TXD.MAXCNT bytes have been transmitted in the case when RXD.MAXCNT is greater than TXD.MAXCNT

6.16.6 Electrical specification

6.16.6.1 Timing specifications

Symbol	Description	Min.	Тур.	Max.	Units
f _{SPIM}	Bit rates for SPIM ²⁵			8	Mbps

²⁵ High bit rates may require GPIOs to be set as High Drive, see GPIO chapter for more details.

Symbol	Description	Min.	Тур.	Max.	Units
t _{SPIM,START}	Time from START task to transmission started		1		μs
t _{SPIM,CSCK}	SCK period	125			ns
t _{SPIM,RSCK,LD}	SCK rise time, standard drive ²⁶			t _{RF,25pF}	
t _{SPIM,RSCK,HD}	SCK rise time, high drive ²⁶			t _{HRF,25pF}	
t _{SPIM,FSCK,LD}	SCK fall time, standard drive ²⁶			t _{RF,25pF}	
t _{SPIM,FSCK,HD}	SCK fall time, high drive ²⁶			t _{HRF,25pF}	
t _{SPIM,WHSCK}	SCK high time ²⁶	(t _{CSCK} /2)		
		- t _{RSCK}			
t _{SPIM,WLSCK}	SCK low time ²⁶	(t _{CSCK} /2)		
		- t _{FSCK}			
t _{SPIM,SUMI}	MISO to CLK edge setup time	19			ns
t _{SPIM,HMI}	CLK edge to MISO hold time	18			ns
t _{SPIM,VMO}	CLK edge to MOSI valid, SCK frequency <= 8 MHz			59	ns
t _{SPIM,VMO,HS}	CLK edge to MOSI valid, SCK frequency > 8 MHz			8	ns
t _{SPIM,HMO}	MOSI hold time after CLK edge	20			ns

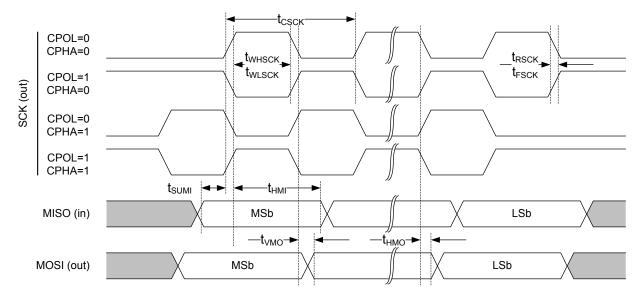


Figure 100: SPIM timing diagram

6.17 SPIS — Serial peripheral interface slave with EasyDMA

SPI slave (SPIS) is implemented with EasyDMA support for ultra low power serial communication from an external SPI master. EasyDMA in conjunction with hardware-based semaphore mechanisms removes all real-time requirements associated with controlling the SPI slave from a low priority CPU execution context.

NORDIC

²⁶ At 25pF load, including GPIO pin capacitance, see GPIO spec.

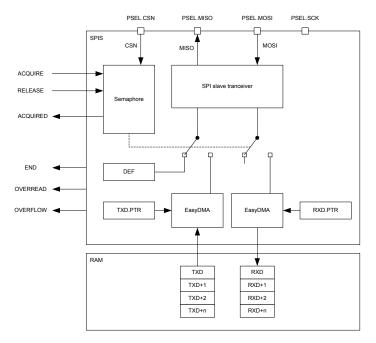


Figure 101: SPI slave

The SPIS supports SPI modes 0 through 3. The CONFIG register allows setting CPOL and CPHA appropriately.

Mode	Clock polarity	Clock phase
	CPOL	СРНА
SPI_MODE0	0 (Active High)	0 (Trailing Edge)
SPI_MODE1	0 (Active High)	1 (Leading Edge)
SPI_MODE2	1 (Active Low)	0 (Trailing Edge)
SPI_MODE3	1 (Active Low)	1 (Leading Edge)

Table 80: SPI modes

6.17.1 Shared resources

The SPI slave shares registers and other resources with other peripherals that have the same ID as the SPI slave. Therefore, you must disable all peripherals that have the same ID as the SPI slave before the SPI slave can be configured and used.

Disabling a peripheral that has the same ID as the SPI slave will not reset any of the registers that are shared with the SPI slave. It is important to configure all relevant SPI slave registers explicitly to secure that it operates correctly.

The Instantiation table in Instantiation on page 20 shows which peripherals have the same ID as the SPI slave.

6.17.2 EasyDMA

The SPIS implements EasyDMA for accessing RAM without CPU involvement.

The SPIS peripheral implements the following EasyDMA channels:

Channel	Туре	Register Cluster
TXD	READER	TXD
RXD	WRITER	RXD

Table 81: SPIS EasyDMA Channels

For detailed information regarding the use of EasyDMA, see EasyDMA on page 39.

If RXD.MAXCNT is larger than TXD.MAXCNT, the remaining transmitted bytes will contain the value defined in the ORC register.

The END event indicates that EasyDMA has finished accessing the buffer in RAM.

6.17.3 SPI slave operation

SPI slave uses two memory pointers, RXD.PTR and TXD.PTR, that point to the RXD buffer (receive buffer) and TXD buffer (transmit buffer) respectively. Since these buffers are located in RAM, which can be accessed by both the SPI slave and the CPU, a hardware based semaphore mechanism is implemented to enable safe sharing.

See SPI transaction when shortcut between END and ACQUIRE is enabled on page 269.

Before the CPU can safely update the RXD.PTR and TXD.PTR pointers it must first acquire the SPI semaphore. The CPU can acquire the semaphore by triggering the ACQUIRE task and then receiving the ACQUIRED event. When the CPU has updated the RXD.PTR and TXD.PTR pointers the CPU must release the semaphore before the SPI slave will be able to acquire it. The CPU releases the semaphore by triggering the RELEASE task. This is illustrated in SPI transaction when shortcut between END and ACQUIRE is enabled on page 269. Triggering the RELEASE task when the semaphore is not granted to the CPU will have no effect.

The semaphore mechanism does not, at any time, prevent the CPU from performing read or write access to the RXD.PTR register, the TXD.PTR registers, or the RAM that these pointers are pointing to. The semaphore is only telling when these can be updated by the CPU so that safe sharing is achieved.

The semaphore is by default assigned to the CPU after the SPI slave is enabled. No ACQUIRED event will be generated for this initial semaphore handover. An ACQUIRED event will be generated immediately if the ACQUIRE task is triggered while the semaphore is assigned to the CPU.

The SPI slave will try to acquire the semaphore when CSN goes low. If the SPI slave does not manage to acquire the semaphore at this point, the transaction will be ignored. This means that all incoming data on MOSI will be discarded, and the DEF (default) character will be clocked out on the MISO line throughout the whole transaction. This will also be the case even if the semaphore is released by the CPU during the transaction. In case of a race condition where the CPU and the SPI slave try to acquire the semaphore at the same time, as illustrated in lifeline item 2 in SPI transaction when shortcut between END and ACQUIRE is enabled on page 269, the semaphore will be granted to the CPU.

If the SPI slave acquires the semaphore, the transaction will be granted. The incoming data on MOSI will be stored in the RXD buffer and the data in the TXD buffer will be clocked out on MISO.

When a granted transaction is completed and CSN goes high, the SPI slave will automatically release the semaphore and generate the END event.

As long as the semaphore is available the SPI slave can be granted multiple transactions one after the other. If the CPU is not able to reconfigure the TXD.PTR and RXD.PTR between granted transactions, the same TX data will be clocked out and the RX buffers will be overwritten. To prevent this from happening, the END_ACQUIRE shortcut can be used. With this shortcut enabled the semaphore will be handed over to the CPU automatically after the granted transaction has completed, giving the CPU the ability to update the TXPTR and RXPTR between every granted transaction.

If the CPU tries to acquire the semaphore while it is assigned to the SPI slave, an immediate handover will not be granted. However, the semaphore will be handed over to the CPU as soon as the SPI slave has released the semaphore after the granted transaction is completed. If the END_ACQUIRE shortcut is enabled and the CPU has triggered the ACQUIRE task during a granted transaction, only one ACQUIRE request will be served following the END event.

The MAXRX register specifies the maximum number of bytes the SPI slave can receive in one granted transaction. If the SPI slave receives more than MAXRX number of bytes, an OVERFLOW will be indicated in the STATUS register and the incoming bytes will be discarded.

The MAXTX parameter specifies the maximum number of bytes the SPI slave can transmit in one granted transaction. If the SPI slave is forced to transmit more than MAXTX number of bytes, an OVERREAD will be indicated in the STATUS register and the ORC character will be clocked out.

The RXD.AMOUNT and TXD.AMOUNT registers are updated when a granted transaction is completed. The TXD.AMOUNT register indicates how many bytes were read from the TX buffer in the last transaction, that is, ORC (over-read) characters are not included in this number. Similarly, the RXD.AMOUNT register indicates how many bytes were written into the RX buffer in the last transaction.

The ENDRX event is generated when the RX buffer has been filled.

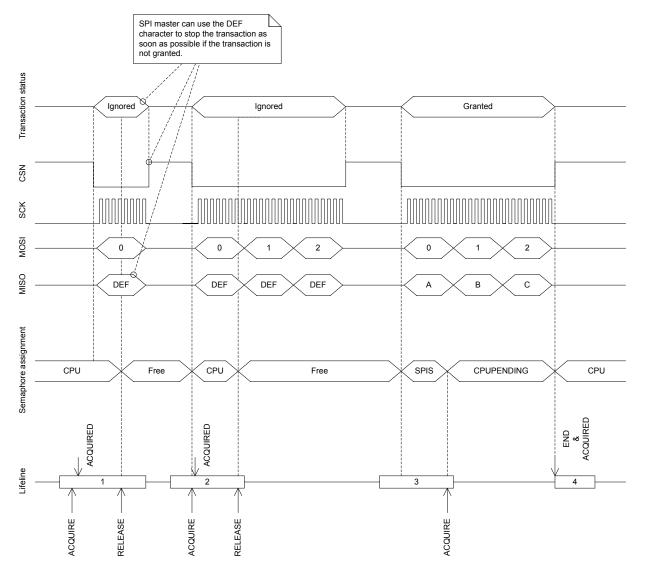


Figure 102: SPI transaction when shortcut between END and ACQUIRE is enabled

6.17.4 Pin configuration

The CSN, SCK, MOSI, and MISO signals associated with the SPI slave are mapped to physical pins according to the configuration specified in the PSEL.CSN, PSEL.SCK, PSEL.MOSI, and PSEL.MISO registers respectively. If the CONNECT field of any of these registers is set to Disconnected, the associated SPI slave signal will not be connected to any physical pins.

The PSEL.CSN, PSEL.SCK, PSEL.MOSI, and PSEL.MISO registers and their configurations are only used as long as the SPI slave is enabled, and retained only as long as the device is in System ON mode, see POWER — Power supply on page 52 chapter for more information about power modes. When the peripheral is disabled, the pins will behave as regular GPIOs, and use the configuration in their respective OUT bit field and PIN_CNF[n] register. PSEL.CSN, PSEL.SCK, PSEL.MOSI, and PSEL.MISO must only be configured when the SPI slave is disabled.

To secure correct behavior in the SPI slave, the pins used by the SPI slave must be configured in the GPIO peripheral as described in GPIO configuration before enabling peripheral on page 270 before enabling the SPI slave. This is to secure that the pins used by the SPI slave are driven correctly if the SPI slave itself is temporarily disabled, or if the device temporarily enters System OFF. This configuration must be retained in the GPIO for the selected I/Os as long as the SPI slave is to be recognized by an external SPI master.

The MISO line is set in high impedance as long as the SPI slave is not selected with CSN.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in unpredictable behavior.

SPI signal	SPI pin	Direction	Output value Comment
CSN	As specified in PSEL.CSN	Input	Not applicable
SCK	As specified in PSEL.SCK	Input	Not applicable
MOSI	As specified in PSEL.MOSI	Input	Not applicable
MISO	As specified in PSEL.MISO	Input	Not applicable Emulates that the SPI slave is not selected.

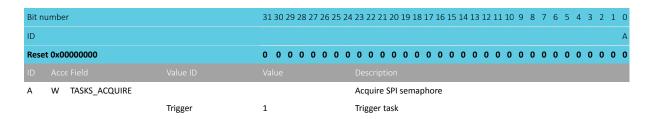
Table 82: GPIO configuration before enabling peripheral

6.17.5 Registers

Base address	Peripheral	Instance	Description	Configuration
0x40003000	SPIS	SPIS0	SPI slave 0	
0x40004000	SPIS	SPIS1	SPI slave 1	

Table 83: Instances

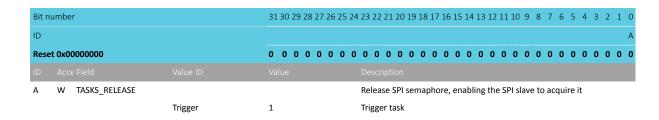
Register	Offset	Description	
TASKS_ACQUIRE	0x024	Acquire SPI semaphore	
TASKS_RELEASE	0x028	Release SPI semaphore, enabling the SPI slave to acquire it	
EVENTS_END	0x104	Granted transaction completed	
EVENTS_ENDRX	0x110	End of RXD buffer reached	
EVENTS_ACQUIRED	0x128	Semaphore acquired	
SHORTS	0x200	Shortcuts between local events and tasks	
INTENSET	0x304	Enable interrupt	
INTENCLR	0x308	Disable interrupt	
SEMSTAT	0x400	Semaphore status register	
STATUS	0x440	Status from last transaction	
ENABLE	0x500	Enable SPI slave	
PSEL.SCK	0x508	Pin select for SCK	
PSEL.MISO	0x50C	Pin select for MISO signal	



Register	Offset	Description	
PSEL.MOSI	0x510	Pin select for MOSI signal	
PSEL.CSN	0x514	Pin select for CSN signal	
PSELSCK	0x508	Pin select for SCK	Deprecated
PSELMISO	0x50C	Pin select for MISO	Deprecated
PSELMOSI	0x510	Pin select for MOSI	Deprecated
PSELCSN	0x514	Pin select for CSN	Deprecated
RXDPTR	0x534	RXD data pointer	Deprecated
MAXRX	0x538	Maximum number of bytes in receive buffer	Deprecated
AMOUNTRX	0x53C	Number of bytes received in last granted transaction	Deprecated
RXD.PTR	0x534	RXD data pointer	
RXD.MAXCNT	0x538	Maximum number of bytes in receive buffer	
RXD.AMOUNT	0x53C	Number of bytes received in last granted transaction	
RXD.LIST	0x540	EasyDMA list type	
TXDPTR	0x544	TXD data pointer	Deprecated
MAXTX	0x548	Maximum number of bytes in transmit buffer	Deprecated
AMOUNTTX	0x54C	Number of bytes transmitted in last granted transaction	Deprecated
TXD.PTR	0x544	TXD data pointer	
TXD.MAXCNT	0x548	Maximum number of bytes in transmit buffer	
TXD.AMOUNT	0x54C	Number of bytes transmitted in last granted transaction	
TXD.LIST	0x550	EasyDMA list type	
CONFIG	0x554	Configuration register	
DEF	0x55C	Default character. Character clocked out in case of an ignored transaction.	
ORC	0x5C0	Over-read character	

Table 84: Register overview

6.17.5.1 TASKS_ACQUIRE


Address offset: 0x024 Acquire SPI semaphore

6.17.5.2 TASKS_RELEASE

Address offset: 0x028

Release SPI semaphore, enabling the SPI slave to acquire it

6.17.5.3 EVENTS_END

Address offset: 0x104

Granted transaction completed

Bit number		31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			А
Reset 0x00000000		0 0 0 0 0 0 0	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$
ID Acce Field			Description
A RW EVENTS_END			Granted transaction completed
	NotGenerated	0	Event not generated
	Generated	1	Event generated

6.17.5.4 EVENTS_ENDRX

Address offset: 0x110

End of RXD buffer reached

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW EVENTS_ENDRX			End of RXD buffer reached
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.17.5.5 EVENTS_ACQUIRED

Address offset: 0x128 Semaphore acquired

Bit number		31 30 29 28 27	7 26 25 24 23 22	21 20 19	18 17 1	.6 15	14 13	12 13	1 10 9	8	7	6	5 4	3	2 2	1 0
ID																Α
Reset 0x000000	00	0 0 0 0 0	00000	0 0 0	0 0 (0 0	0 0	0 0	0 (0	0	0	0 0	0	0 (0 0
ID Acce Field																
A RW EVEN	TS_ACQUIRED		Sema	phore acq	uired											
	NotGenerate	d 0	Even	t not gener	ated											
	Generated	1	Even	t generated	t											

6.17.5.6 SHORTS

Address offset: 0x200

Shortcuts between local events and tasks

Bit number		31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			А
Reset 0x00000000		0 0 0 0 0 0	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$
ID Acce Field			Description
A RW END_ACQUIRE			Shortcut between event END and task ACQUIRE
	Disabled	0	Disable shortcut
	Enabled	1	Enable shortcut

6.17.5.7 INTENSET

Address offset: 0x304

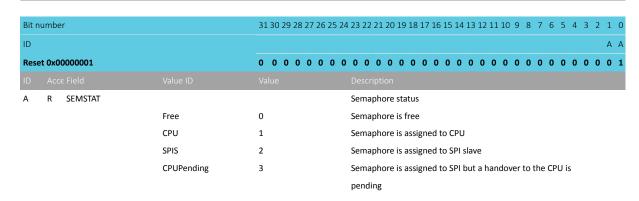
Enable interrupt

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				C B A
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW END			Write '1' to enable interrupt for event END
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
В	RW ENDRX			Write '1' to enable interrupt for event ENDRX
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
С	RW ACQUIRED			Write '1' to enable interrupt for event ACQUIRED
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

6.17.5.8 INTENCLR

Address offset: 0x308

Disable interrupt


Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				C B A
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW END			Write '1' to disable interrupt for event END
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
В	RW ENDRX			Write '1' to disable interrupt for event ENDRX
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
С	RW ACQUIRED			Write '1' to disable interrupt for event ACQUIRED
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

6.17.5.9 SEMSTAT

Address offset: 0x400

Semaphore status register

6.17.5.10 STATUS

Address offset: 0x440

Status from last transaction

Individual bits are cleared by writing a '1' to the bits that shall be cleared

Bit number		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			ВА
Reset 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A RW OVERREAD			TX buffer over-read detected, and prevented
	NotPresent	0	Read: error not present
	Present	1	Read: error present
	Clear	1	Write: clear error on writing '1'
B RW OVERFLOW			RX buffer overflow detected, and prevented
	NotPresent	0	Read: error not present
	Present	1	Read: error present
	Clear	1	Write: clear error on writing '1'

6.17.5.11 ENABLE

Address offset: 0x500

Enable SPI slave

Bit number		31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			АААА
Reset 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A RW ENABLE			Enable or disable SPI slave
	Disabled	0	Disable SPI slave
	Enabled	2	Enable SPI slave

6.17.5.12 PSEL.SCK

Address offset: 0x508

Pin select for SCK

Bit nu	umber		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	АААА
Rese	t OxFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect

6.17.5.13 PSEL.MISO

Address offset: 0x50C

Pin select for MISO signal

Bit no	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	ААААА
Rese	t OxFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				Description
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect

6.17.5.14 PSEL.MOSI

Address offset: 0x510

Pin select for MOSI signal

Bit n	umber		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	ААААА
Rese	t OxFFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				Description
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect

6.17.5.15 PSEL.CSN

Address offset: 0x514

Pin select for CSN signal

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	ААААА
Rese	t OxFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				Description
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect

6.17.5.16 PSELSCK (Deprecated)

Address offset: 0x508

Pin select for SCK

ID Rese	t OxFFFFFFF		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
10	Acce Field		Value Description		
י עד					
A	RW PSELSCK	value 15	[031] Pin number configuration for SPI SCK signal		

6.17.5.17 PSELMISO (Deprecated)

Address offset: 0x50C Pin select for MISO

,,	NW 1 SELWISO	Disconnected	OxFFFFFFF	Disconnect
Α	RW PSELMISO		[031]	Pin number configuration for SPI MISO signal
ID				Description
Res	et OxFFFFFFF		1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID			A A A A A A	A A A A A A A A A A A A A A A A A A A
Bit r	number		31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

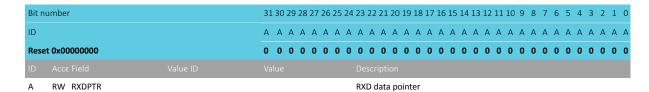
6.17.5.18 PSELMOSI (Deprecated)

Address offset: 0x510 Pin select for MOSI

Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			A A A A A A A	
Rese	t 0xFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				Description
Α	RW PSELMOSI		[031]	Pin number configuration for SPI MOSI signal
		Disconnected	0xFFFFFFF	Disconnect

6.17.5.19 PSELCSN (Deprecated)

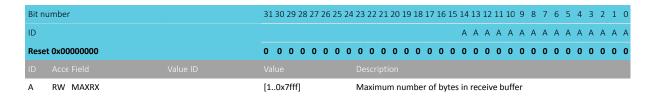
Address offset: 0x514 Pin select for CSN


Bit n	umber		31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			A A A A A A A A A A A A A A A A A A A
Rese	t OxFFFFFFF		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID			
Α	RW PSELCSN		[031] Pin number configuration for SPI CSN signal
	Disconnected 0xFFFFFFF		0xFFFFFFF Disconnect

6.17.5.20 RXDPTR (Deprecated)

Address offset: 0x534

RXD data pointer



Note: See the memory chapter for details about which memories are available for EasyDMA.

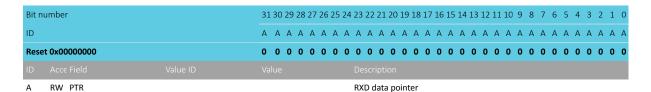
6.17.5.21 MAXRX (Deprecated)

Address offset: 0x538

Maximum number of bytes in receive buffer

6.17.5.22 AMOUNTRX (Deprecated)

Address offset: 0x53C


Number of bytes received in last granted transaction

Bit number		31 30 29	9 28 27 26 25 24	23 22 21 20 19	18 17 16 15 1	.4 13 12 11	10 9 8	3 7	6 5	4 3	3 2	1 0
ID						A A A A	A A A	A A	А А	A A	A A	A A
Reset 0x0000	00000	0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0	0 0	0 (0 0	0 0
ID Acce F												
A R A	MOUNTRX	[10x7ff	ff]	Number of byt	es received in	the last gr	anted tr	ansad	tion			

6.17.5.23 RXD.PTR

Address offset: 0x534

RXD data pointer

Note: See the memory chapter for details about which memories are available for EasyDMA.

6.17.5.24 RXD.MAXCNT

Address offset: 0x538

Maximum number of bytes in receive buffer

Α	RW MAXCNT	[10x7fff]	Maximum number of bytes in receive buffer
ID			Description
Res	et 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID			A A A A A A A A A A A A A A A A A A A
Bit r	umber	31 30 29 28 27 26 25	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.17.5.25 RXD.AMOUNT

Address offset: 0x53C

Number of bytes received in last granted transaction

^	R AMOUNT	[10x7fff]	Number of bytes received in the last granted transaction
ID			
Rese	et 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID			A A A A A A A A A A A A A A A
Bit n	umber	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.17.5.26 RXD.LIST

Address offset: 0x540 EasyDMA list type

Bit number	31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		A A
Reset 0x00000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value IE		Description
A RW LIST		List type
Disable	d 0	Disable EasyDMA list
ArrayLis	t 1	Use array list

6.17.5.27 TXDPTR (Deprecated)

Address offset: 0x544

TXD data pointer

A F	RW TXDPTR									TXI	o da	ata	poi	nte	r																
ID A																															
Reset 0	0x0000000	0	0	0	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (
ID		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α.	Α ,	Δ Δ	A	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α.	A	A A
Bit num	nber	31	1 30	29	28	27	26	25	24	23	22 :	21 2	20 1	.9 1	8 1	7 16	5 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 (

Note: See the memory chapter for details about

which memories are available for EasyDMA.

6.17.5.28 MAXTX (Deprecated)

Address offset: 0x548

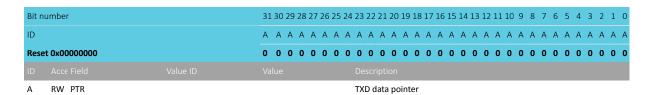
Maximum number of bytes in transmit buffer

NORDIC*

Α	RW MAXTX	[10x7ff	fl		-	Maxir	num	num	ber c	f byte	es in	tra	nsm	it bı	ıffer							
ID																						
Res	et 0x00000000	0 0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 (0	0	0	0 0	0	0	0	0	0 0	0	0 (o 0
ID											Α	Α	Α ,	Δ <i>A</i>	Α	Α	Α	Α	ДД	Α	A	А А
Bit r	umber	31 30 29	28 27	26 25	24 2	23 22	21 2	0 19	18 17	' 16 1	5 14	13	12 1	1 1	9	8	7	6	5 4	3	2	1 0

6.17.5.29 AMOUNTTX (Deprecated)

Address offset: 0x54C


Number of bytes transmitted in last granted transaction

Α	R AMOUNTTX	[10x7fff]	Number of bytes transmitted in last granted transaction
ID			
Res	et 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID			A A A A A A A A A A A A A A A A A A A
Bit r	number	31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

6.17.5.30 TXD.PTR

Address offset: 0x544

TXD data pointer

Note: See the memory chapter for details about which memories are available for EasyDMA.

6.17.5.31 TXD.MAXCNT

Address offset: 0x548

Maximum number of bytes in transmit buffer

Statistical Property of the Control of the Contro	
ID A A A A A A A A A A A A A A A A A A A	
	0 0 0 0
51 50 25 26 27 20 23 24 23 22 21 20 15 16 17 10 13 14 13 12 11 10 5 6 7 0 3 4	АААА
Bit number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4	3 2 1 0

6.17.5.32 TXD.AMOUNT

Address offset: 0x54C

Number of bytes transmitted in last granted transaction

Α	R AMOUNT	[10x7fff]	Number of bytes transmitted in last granted transaction
ID			Description
Res	et 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID			A A A A A A A A A A A A A A A A A A A
Bit r	umber	31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.17.5.33 TXD.LIST

Address offset: 0x550 EasyDMA list type

Bit number	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		АА
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		Description
A RW LIST		List type
Disabled	0	Disable EasyDMA list
ArrayList	1	Use array list

6.17.5.34 CONFIG

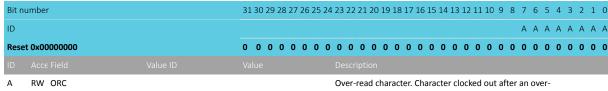
Address offset: 0x554 Configuration register

Bit number		31 30 29 28 27 26 29	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			СВА
Reset 0x0000	0000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Fie			Description
A RW OF	RDER		Bit order
	MsbFirst	0	Most significant bit shifted out first
	LsbFirst	1	Least significant bit shifted out first
B RW CP	НА		Serial clock (SCK) phase
	Leading	0	Sample on leading edge of clock, shift serial data on trailing
			edge
	Trailing	1	Sample on trailing edge of clock, shift serial data on leading
			edge
C RW CP	OL		Serial clock (SCK) polarity
	ActiveHigh	0	Active high
	ActiveLow	1	Active low

6.17.5.35 DEF

Address offset: 0x55C

Default character. Character clocked out in case of an ignored transaction.


Bit number 3			31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0							
ID			A A A A A A A								
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
ID											
Α	RW DEF			Default character. Character clocked out in case of an							
			ignored transaction.								

6.17.5.36 ORC

Address offset: 0x5C0

Over-read character

Over-read character. Character clocked out after an over read of the transmit buffer.

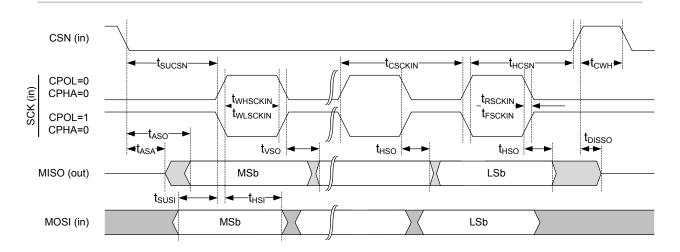
6.17.6 Electrical specification

6.17.6.1 SPIS slave interface electrical specifications

Symbol	Description	Min.	Тур.	Max.	Units
f _{SPIS}	Bit rates for SPIS ²⁷			8 ²⁸	Mbps
t _{SPIS,START}	Time from RELEASE task to receive/transmit (CSN active)		0.125		μs

6.17.6.2 Serial Peripheral Interface Slave (SPIS) timing specifications

Symbol	Description	Min.	Тур.	Max.	Units
t _{SPIS,CSCKIN}	SCK input period	125			ns
t _{SPIS,RFSCKIN}	SCK input rise/fall time			30	ns
t _{SPIS,WHSCKIN}	SCK input high time	30			ns
t _{SPIS,WLSCKIN}	SCK input low time	30			ns
t _{SPIS,SUCSN}	CSN to CLK setup time	1000			ns
t _{SPIS,HCSN}	CLK to CSN hold time	1000			ns
t _{SPIS,ASA}	CSN to MISO driven	0			ns
t _{SPIS,ASO}	CSN to MISO valid ²⁹			1000	ns
t _{SPIS,DISSO}	CSN to MISO disabled ²⁹			68	ns
t _{SPIS,CWH}	CSN inactive time	300			ns
t _{SPIS,VSO}	CLK edge to MISO valid			19	ns
t _{SPIS,HSO}	MISO hold time after CLK edge	18 ³⁰			ns
t _{SPIS,SUSI}	MOSI to CLK edge setup time	59			ns
t _{SPIS,HSI}	CLK edge to MOSI hold time	20			ns



 $^{^{27}}$ High bit rates may require GPIOs to be set as High Drive, see GPIO chapter for more details.

The actual maximum data rate depends on the master's CLK to MISO and MOSI setup and hold timings

²⁹ At 25pF load, including GPIO capacitance, see GPIO spec.

This is to ensure compatibility to SPI masters sampling MISO on the same edge as MOSI is output

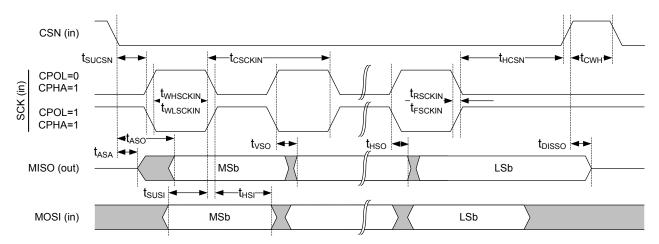


Figure 103: SPIS timing diagram

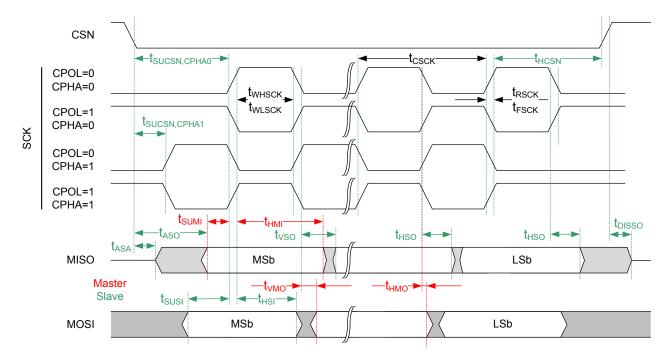


Figure 104: Common SPIM and SPIS timing diagram

6.18 SWI — Software interrupts

A set of interrupts have been reserved for use as software interrupts.

6.18.1 Registers

Base address	Peripheral	Instance	Description	Configuration
0x40014000	SWI	SWI0	Software interrupt 0	
0x40015000	SWI	SWI1	Software interrupt 1	
0x40016000	SWI	SWI2	Software interrupt 2	
0x40017000	SWI	SWI3	Software interrupt 3	
0x40018000	SWI	SWI4	Software interrupt 4	
0x40019000	SWI	SWI5	Software interrupt 5	

Table 85: Instances

6.19 TEMP — Temperature sensor

The temperature sensor measures die temperature over the temperature range of the device. Linearity compensation can be implemented if required by the application.

Listed here are the main features for TEMP:

- Temperature range is greater than or equal to operating temperature of the device
- Resolution is 0.25 degrees

TEMP is started by triggering the START task.

When the temperature measurement is completed, a DATARDY event will be generated and the result of the measurement can be read from the TEMP register.

To achieve the measurement accuracy stated in the electrical specification, the crystal oscillator must be selected as the HFCLK source, see CLOCK — Clock control on page 72 for more information.

When the temperature measurement is completed, TEMP analog electronics power down to save power.

TEMP only supports one-shot operation, meaning that every TEMP measurement has to be explicitly started using the START task.

6.19.1 Registers

Base address	Peripheral	Instance	Description	Configuration
0x4000C000	TEMP	TEMP	Temperature sensor	

Table 86: Instances

Register	Offset	Description
TASKS_START	0x000	Start temperature measurement
TASKS_STOP	0x004	Stop temperature measurement
EVENTS_DATARDY	0x100	Temperature measurement complete, data ready
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt
TEMP	0x508	Temperature in °C (0.25° steps)
A0	0x520	Slope of 1st piece wise linear function

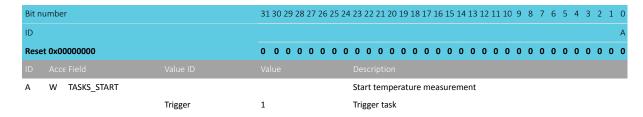
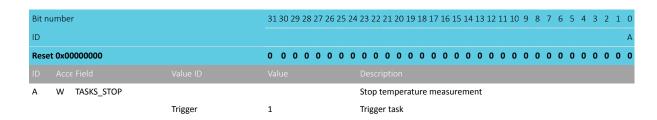

Desistan	Offset	Description
Register	Offset	Description
A1	0x524	Slope of 2nd piece wise linear function
A2	0x528	Slope of 3rd piece wise linear function
A3	0x52C	Slope of 4th piece wise linear function
A4	0x530	Slope of 5th piece wise linear function
A5	0x534	Slope of 6th piece wise linear function
ВО	0x540	y-intercept of 1st piece wise linear function
B1	0x544	y-intercept of 2nd piece wise linear function
B2	0x548	y-intercept of 3rd piece wise linear function
B3	0x54C	y-intercept of 4th piece wise linear function
B4	0x550	y-intercept of 5th piece wise linear function
B5	0x554	y-intercept of 6th piece wise linear function
ТО	0x560	End point of 1st piece wise linear function
T1	0x564	End point of 2nd piece wise linear function
T2	0x568	End point of 3rd piece wise linear function
T3	0x56C	End point of 4th piece wise linear function
T4	0x570	End point of 5th piece wise linear function

Table 87: Register overview

6.19.1.1 TASKS_START

Address offset: 0x000


Start temperature measurement

6.19.1.2 TASKS_STOP

Address offset: 0x004

Stop temperature measurement

6.19.1.3 EVENTS_DATARDY

Address offset: 0x100

Temperature measurement complete, data ready

Bit number		31 30 29 28 27	7 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			А
Reset 0x00000000		0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A RW EVENTS_DATAF	RDY		Temperature measurement complete, data ready
	NotGenerated	0	Event not generated
	Generated	1	Event generated

6.19.1.4 INTENSET

Address offset: 0x304

Enable interrupt

Bit n	umber		31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	t 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW DATARDY			Write '1' to enable interrupt for event DATARDY
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled		Read: Enabled

6.19.1.5 INTENCLR

Address offset: 0x308

Disable interrupt

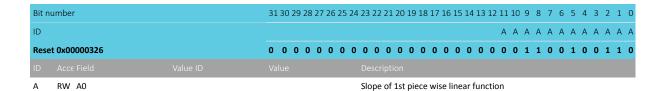
Bit number	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		A
Reset 0x00000000	0 0 0 0 0 0 0	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$
ID Acce Field Value ID		Description
A RW DATARDY		Write '1' to disable interrupt for event DATARDY
Clear	1	Disable
Disabled	0	Read: Disabled
Enabled	1	Read: Enabled

6.19.1.6 TEMP

Address offset: 0x508

Temperature in °C (0.25° steps)

Bit n	umber		31	30	29 2	28 2	27 2	6 2	5 2	4 2	23 2	22 2	21 2	0 1	9 18	3 17	' 16	15	14	13	12 :	11 1	10 9	8	7	6	5	4	3	2 1	1 0
ID			Α	Α	Α	Α.	A A	۱ ۸	4 /	4	Α.	A	A A	Δ /	4 A	Α	Α	Α	Α	Α	Α	A	А Д	A	Α	Α	Α	Α	Α ,	A A	A A
Reset 0x00000000			0	0	0	0	0 () (0 (0	0	0	0 (0 (0 0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0 (0 (0 0
ID																															
Α	R TEMP		Temperature in °C (0.25° steps)																												
										1	Res	ult	of t	em	pera	atur	re n	nea	sure	eme	ent.	Die	e ter	npe	rat	ure	in '	°C,			
										2's complement format, 0.25 °C steps																					
		Decision point: DATARDY																													



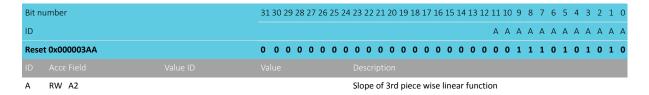
6.19.1.7 A0

Address offset: 0x520

Slope of 1st piece wise linear function

6.19.1.8 A1

Address offset: 0x524


Slope of 2nd piece wise linear function

Α	RW A1		Slope of 2nd piece wise lin	near function					
ID									
Rese	et 0x00000348	0 0 0 0 0 0 0	000000000	0 0 0 0 0 0 1	1 0	1	0 0	1	0 0 0
ID				A A A	A A	Α	A A	Α	A A A
Bit n	umber	31 30 29 28 27 26 25 2	1 23 22 21 20 19 18 17 16 1	5 14 13 12 11 10 9	8 7	6	5 4	3	2 1 0

6.19.1.9 A2

Address offset: 0x528

Slope of 3rd piece wise linear function

6.19.1.10 A3

Address offset: 0x52C

Slope of 4th piece wise linear function

Bit n	Bit number			29	28 2	7 2	6 25	24	23 2	22 2	1 20	19	18	17 1	6 15	5 14	13 :	12 1:	10	9	8	7	6	5	4 3	3 2	1	0
ID																		А	Α	Α	Α	Α	Α	Α	A A	A A	Α	Α
Rese	t 0x0000040E		0 0	0	0 (0 0	0	0	0 (0 (0 0	0	0	0 (0 0	0	0	0 0	1	0	0	0	0	0	0 1	l 1	1	0
ID																												
A RW A3									Slop	oe o	of 4t	h pi	ece	wise	e lin	ear	func	tion										_

6.19.1.11 A4

Address offset: 0x530

Slope of 5th piece wise linear function

Bit number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 10 Reset 0x000004BD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A RW A4		Slope of 5th piece wise linear function
ID AAAAAAAAAAAAA	ID Acce Field		
	Reset 0x000004BD	0 0 0 0 0 0	$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $
Bit number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	ID		A A A A A A A A A A A A A A A A A A A
	Bit number	31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

6.19.1.12 A5

Address offset: 0x534

Slope of 6th piece wise linear function

Α	A RW A5								SI	lop	e of	f 6tl	h pi	ece	wise	e lin	ear	fun	ctior	ı									
ID																													
Rese	et 0x000005A3		0	0 (0 0	0	0	0 (0) (0	0	0	0	0 (0	0	0	0 (0 1	١ ٥	1	1	0	1	0	0) 1	1
ID																			,	A A	A A	Α	Α	Α	Α	Α.	A A	Д А	Α
Bit r	8it number			30 2	9 28	3 27	26 2	25 2	4 2	3 2	2 2:	1 20	19	18 1	17 1	6 15	5 14	13	12 1	1 1	0 9	8	7	6	5	4	3 2	2 1	0

6.19.1.13 BO

Address offset: 0x540

y-intercept of 1st piece wise linear function

Α	RW B0	y-intercept of 1st piece wise linear function
ID		
Res	t 0x00003FEF	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID		A A A A A A A A A A A A A A A A A A A
Bit r	umber	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.19.1.14 B1

Address offset: 0x544

y-intercept of 2nd piece wise linear function

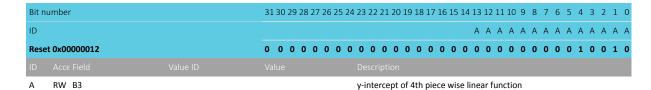
Bit no	it number			29 2	28 27	26 2	25 24	1 23	22 2	21 20	19	18 1	7 16	15	14 1	3 12	11	10 9	9 8	3 7	6	5	4	3 2	1	0
ID															A	A	Α	A A	Α Α	A	Α	Α	Α.	Α Δ	A	Α
Rese	: 0x00003FBE		0 0	0 (0 0	0	0 0	0	0	0 0	0	0 (0	0	0 1	. 1	1	1 1	l 1	. 1	0	1	1	1 1	. 1	0
ID																										
Α	A RW B1							ıi-y	nter	cept	of 2	nd p	iece	wis	e lin	ear i	unc	tion								_

6.19.1.15 B2

Address offset: 0x548

y-intercept of 3rd piece wise linear function

	A RW B2									wise											
ID																					
Rese	t 0x00003FBE		0 0 0 0	0 0 0	0 0	0 (0 0	0 0	0 0	0	0 1	1	1 1	. 1	1	1	0 1	. 1	1	1 1	. 0
ID											Α	Α	A A	A	Α	Α	A A	A	Α	ΑА	· Α
Bit n	umber		31 30 29 28	3 27 26 25	24 23	3 22 2	1 20 1	19 18	17 16	5 15 1	.4 13	12 :	11 1	9	8	7	6 5	4	3	2 1	. 0



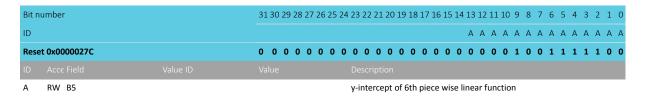
6.19.1.16 B3

Address offset: 0x54C

y-intercept of 4th piece wise linear function

6.19.1.17 B4

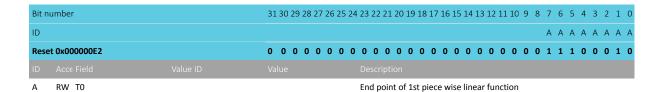
Address offset: 0x550


y-intercept of 5th piece wise linear function

Α	RW B4		y-intercept of 5th piece wise I	linear function						
ID										
Rese	et 0x00000124	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	1 0	0	1 0	0	1 0	0
ID				A A A A A	A A	Α ,	А А	Α.	А А	Α
Bit r	umber	31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14	13 12 11 10 9	8 7	6	5 4	3	2 1	0

6.19.1.18 B5

Address offset: 0x554


y-intercept of 6th piece wise linear function

6.19.1.19 TO

Address offset: 0x560

End point of 1st piece wise linear function

6.19.1.20 T1

Address offset: 0x564

End point of 2nd piece wise linear function

Bit number		313	0 29	9 28	27 :	26 2	5 24	23	22	21 2	0 19	9 18	17	16 1	.5 1	4 13	12 :	11 10	0 9	8	7	6	5	4 3	2	1 (
ID																					Α	Α	Α	A A	A	A A
Reset 0x00000000		0 (0	0	0	0 (0 0	0	0	0	0 0	0	0	0 (0 0	0	0	0 0	0	0	0	0	0	0 0	0	0 (
ID Acce Field	Value ID	Valu						De	scri	iptio	n															

A RW T1

End point of 2nd piece wise linear function

6.19.1.21 T2

Address offset: 0x568

End point of 3rd piece wise linear function

Α	RW T2							Enc	d po	int o	of 3	rd pi	ece	wis	e lin	ear	func	tion									
ID																											
Rese	et 0x00000019	0 (0 0	0	0 (0	0	0	0	0 0	0	0	0 (0	0	0	0 0	0	0	0 ()	0 0	1	1	0	0	1
ID																				,	Δ.	Δ Δ	A	Α	Α	Α .	A
Bit r	number	313	0 29	9 28	27 2	6 25	24	23	22 2	21 20	0 19	18 1	17 1	6 15	14	13	12 1	1 10	9	8	7	5 5	4	3	2	1	0

6.19.1.22 T3

Address offset: 0x56C

End point of 4th piece wise linear function

Bit n	umber	31 30 29 28	3 27 26 25	24 23 2	22 21 2	0 19	18 17	16 15	14 1	3 12 1	1 10	9 8	3 7	6	5	4 3	3 2	1 0
ID													Α	Α	Α	A A	4 A	АА
Rese	t 0x0000003C	0 0 0 0	0 0 0	0 0	0 0	0 0	0 0	0 0	0 (0	0 0	0 (0 0	0	1	1 :	1 1	0 0
ID																		
Α	RW T3			End	point	of 4th	piece	e wise	line	ar fun	ction							

6.19.1.23 T4

Address offset: 0x570

End point of 5th piece wise linear function

Α	RW T4	End point of 5th piece wise linear function	
ID			
Res	et 0x00000050	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0
ID		A A A A A	. A A
Bit r	umber	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2	1 0

6.19.2 Electrical specification

6.19.2.1 Temperature Sensor Electrical Specification

Symbol	Description	Min.	Тур.	Max.	Units
t _{TEMP}	Time required for temperature measurement		36		μs
T _{TEMP,RANGE}	Temperature sensor range	-40		105	°C
T _{TEMP,ACC}	Temperature sensor accuracy	-5		5	°C
T _{TEMP,ACC,EXT}	Temperature sensor accuracy, extended temperature range	-7		7	°C
T _{TEMP,RES}	Temperature sensor resolution		0.25		°C
T _{TEMP,STB}	Sample to sample stability at constant device temperature		±0.25		°C
T _{TEMP,OFFST}	Sample offset at 25°C	-2.5		2.5	°C

$6.20 \text{ TWI} - I^2 \text{C}$ compatible two-wire interface

The TWI master is compatible with I²C operating at 100 kHz and 400 kHz.

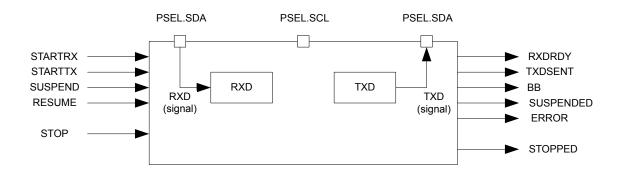


Figure 105: TWI master's main features

6.20.1 Functional description

This TWI master is not compatible with CBUS. The TWI transmitter and receiver are single buffered.

See, TWI master's main features on page 290.

A TWI setup comprising one master and three slaves is illustrated in A typical TWI setup comprising one master and three slaves on page 290. This TWI master is only able to operate as the only master on the TWI bus.

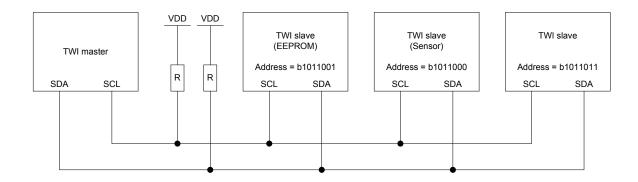


Figure 106: A typical TWI setup comprising one master and three slaves

This TWI master supports clock stretching performed by the slaves. The TWI master is started by triggering the STARTTX or STARTRX tasks, and stopped by triggering the STOP task.

If a NACK is clocked in from the slave, the TWI master will generate an ERROR event.

6.20.2 Master mode pin configuration

The different signals SCL and SDA associated with the TWI master are mapped to physical pins according to the configuration specified in the PSEL.SCL and PSEL.SDA registers respectively.

If the CONNECT field of a PSEL.xxx register is set to Disconnected, the associated TWI signal is not connected to any physical pin. The PSEL.SCL and PSEL.SDA registers and their configurations are only used

as long as the TWI master is enabled, and retained only as long as the device is in ON mode. PSEL.SCL and PSEL.SDA must only be configured when the TWI is disabled.

To secure correct signal levels on the pins used by the TWI master when the system is in OFF mode, and when the TWI master is disabled, these pins must be configured in the GPIO peripheral as described in GPIO configuration on page 291.

Only one peripheral can be assigned to drive a particular GPIO pin at a time, failing to do so may result in unpredictable behavior.

TWI master signal	TWI master pin	Direction	Drive strength	Output value
SCL	As specified in PSEL.SCL	Input	SOD1	Not applicable
SDA	As specified in PSEL.SDA	Input	SOD1	Not applicable

Table 88: GPIO configuration

6.20.3 Shared resources

The TWI shares registers and other resources with other peripherals that have the same ID as the TWI.

Therefore, you must disable all peripherals that have the same ID as the TWI before the TWI can be configured and used. Disabling a peripheral that has the same ID as the TWI will not reset any of the registers that are shared with the TWI. It is therefore important to configure all relevant TWI registers explicitly to secure that it operates correctly.

The Instantiation table in Instantiation on page 20 shows which peripherals have the same ID as the TWI.

6.20.4 Master write sequence

A TWI master write sequence is started by triggering the STARTTX task. After the STARTTX task has been triggered, the TWI master will generate a start condition on the TWI bus, followed by clocking out the address and the READ/WRITE bit set to 0 (WRITE=0, READ=1).

The address must match the address of the slave device that the master wants to write to. The READ/WRITE bit is followed by an ACK/NACK bit (ACK=0 or NACK=1) generated by the slave.

After receiving the ACK bit, the TWI master will clock out the data bytes that are written to the TXD register. Each byte clocked out from the master will be followed by an ACK/NACK bit clocked in from the slave. A TXDSENT event will be generated each time the TWI master has clocked out a TXD byte, and the associated ACK/NACK bit has been clocked in from the slave.

The TWI master transmitter is single buffered, and a second byte can only be written to the TXD register after the previous byte has been clocked out and the ACK/NACK bit clocked in, that is, after the TXDSENT event has been generated.

If the CPU is prevented from writing to TXD when the TWI master is ready to clock out a byte, the TWI master will stretch the clock until the CPU has written a byte to the TXD register.

A typical TWI master write sequence is illustrated in The TWI master writing data to a slave on page 292. Occurrence 3 in the figure illustrates delayed processing of the TXDSENT event associated with TXD byte 1. In this scenario the TWI master will stretch the clock to prevent writing erroneous data to the slave.

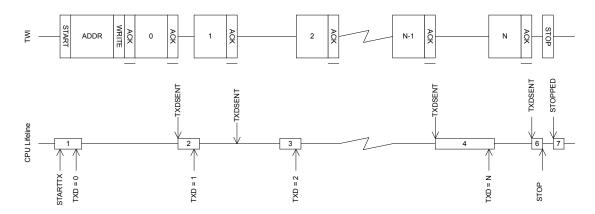


Figure 107: The TWI master writing data to a slave

The TWI master write sequence is stopped when the STOP task is triggered whereupon the TWI master will generate a stop condition on the TWI bus.

6.20.5 Master read sequence

A TWI master read sequence is started by triggering the STARTRX task. After the STARTRX task has been triggered the TWI master will generate a start condition on the TWI bus, followed by clocking out the address and the READ/WRITE bit set to 1 (WRITE = 0, READ = 1).

The address must match the address of the slave device that the master wants to read from. The READ/WRITE bit is followed by an ACK/NACK bit (ACK=0 or NACK = 1) generated by the slave.

After having sent the ACK bit the TWI slave will send data to the master using the clock generated by the master.

The TWI master will generate a RXDRDY event every time a new byte is received in the RXD register.

After receiving a byte, the TWI master will delay sending the ACK/NACK bit by stretching the clock until the CPU has extracted the received byte, that is, by reading the RXD register.

The TWI master read sequence is stopped by triggering the STOP task. This task must be triggered before the last byte is extracted from RXD to ensure that the TWI master sends a NACK back to the slave before generating the stop condition.

A typical TWI master read sequence is illustrated in The TWI master reading data from a slave on page 293. Occurrence 3 in this figure illustrates delayed processing of the RXDRDY event associated with RXD byte B. In this scenario the TWI master will stretch the clock to prevent the slave from overwriting the contents of the RXD register.

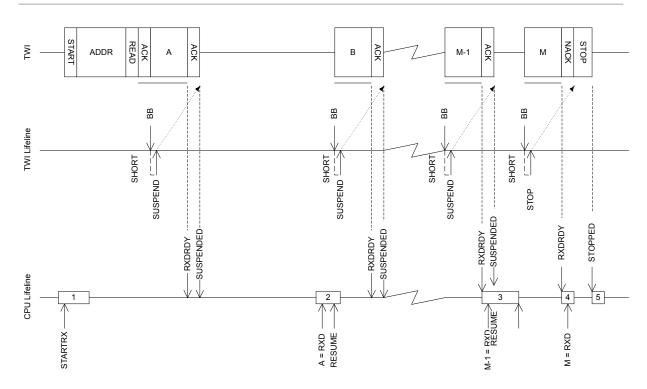


Figure 108: The TWI master reading data from a slave

6.20.6 Master repeated start sequence

A typical repeated start sequence is one in which the TWI master writes one byte to the slave followed by reading M bytes from the slave. Any combination and number of transmit and receive sequences can be combined in this fashion. Only one shortcut to STOP can be enabled at any given time.

The figure below illustrates a repeated start sequence where the TWI master writes one byte, followed by reading M bytes from the slave without performing a stop in-between.

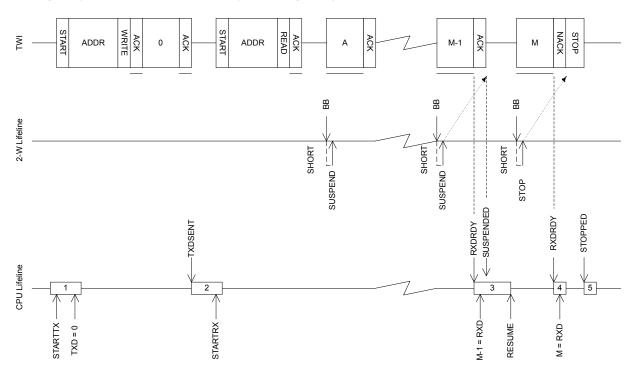


Figure 109: A repeated start sequence, where the TWI master writes one byte, followed by reading M bytes from the slave without performing a stop in-between

To generate a repeated start after a read sequence, a second start task must be triggered instead of the STOP task, that is, STARTRX or STARTTX. This start task must be triggered before the last byte is extracted from RXD to ensure that the TWI master sends a NACK back to the slave before generating the repeated start condition.

6.20.7 Low power

When putting the system in low power and the peripheral is not needed, lowest possible power consumption is achieved by stopping, and then disabling the peripheral.

The STOP task may not be always needed (the peripheral might already be stopped), but if it is sent, software shall wait until the STOPPED event was received as a response before disabling the peripheral through the ENABLE register.

6.20.8 Registers

Base address	Peripheral	Instance	Description	Configuration	
0x40003000	TWI	TWI0	Two-wire interface master 0		Deprecated
0x40004000	TWI	TWI1	Two-wire interface master 1		Deprecated

Table 89: Instances

Register	Offset	Description
TASKS_STARTRX	0x000	Start TWI receive sequence
TASKS_STARTTX	0x008	Start TWI transmit sequence
TASKS_STOP	0x014	Stop TWI transaction
TASKS_SUSPEND	0x01C	Suspend TWI transaction
TASKS_RESUME	0x020	Resume TWI transaction
EVENTS_STOPPED	0x104	TWI stopped
EVENTS_RXDREADY	0x108	TWI RXD byte received
EVENTS_TXDSENT	0x11C	TWI TXD byte sent
EVENTS_ERROR	0x124	TWI error
EVENTS_BB	0x138	TWI byte boundary, generated before each byte that is sent or received
EVENTS_SUSPENDED	0x148	TWI entered the suspended state
SHORTS	0x200	Shortcuts between local events and tasks
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt
ERRORSRC	0x4C4	Error source
ENABLE	0x500	Enable TWI
PSEL.SCL	0x508	Pin select for SCL
PSEL.SDA	0x50C	Pin select for SDA
RXD	0x518	RXD register
TXD	0x51C	TXD register
FREQUENCY	0x524	TWI frequency. Accuracy depends on the HFCLK source selected.
ADDRESS	0x588	Address used in the TWI transfer

Table 90: Register overview

6.20.8.1 TASKS_STARTRX

Address offset: 0x000

Start TWI receive sequence

Bit n	um	ber		31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					А
Rese	t O	x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
Α	٧	V TASKS_STARTRX			Start TWI receive sequence
			Trigger	1	Trigger task

6.20.8.2 TASKS_STARTTX

Address offset: 0x008

Start TWI transmit sequence

Bit n	umber		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	W TASKS_STARTTX			Start TWI transmit sequence
		Trigger	1	Trigger task

6.20.8.3 TASKS_STOP

Address offset: 0x014
Stop TWI transaction

Bit n	umber		31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				Α
Rese	et 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	W TASKS_STOP			Stop TWI transaction
		Trigger	1	Trigger task

6.20.8.4 TASKS_SUSPEND

Address offset: 0x01C
Suspend TWI transaction

Α	W TASKS_SUSPEND		Suspend TWI transaction
ID			
Reset	0x00000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID			A
Bit nu	ımber	31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.20.8.5 TASKS_RESUME

Address offset: 0x020 Resume TWI transaction

Bit nu	umber		31 30 29 28 27 26 29	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Reset	t 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	W TASKS_RESUME			Resume TWI transaction
		Trigger	1	Trigger task

6.20.8.6 EVENTS_STOPPED

Address offset: 0x104

TWI stopped

Bit number		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			А
Reset 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A RW EVENTS_STOPPED			TWI stopped
	NotGenerated	0	Event not generated
	Generated	1	Event generated

6.20.8.7 EVENTS_RXDREADY

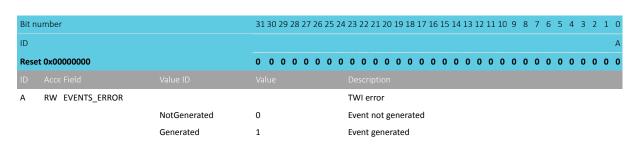
Address offset: 0x108

TWI RXD byte received

Bit n	umber		31 30 29 28	27 26 25	24 2	3 22	21 20	19 1	8 17	16 1	5 14	13 13	2 11	10 9	8	7	6	5	4 3	2	1 0
ID																					А
Rese	et 0x00000000		0 0 0 0	0 0 0	0	0 0	0 0	0 (0	0 0	0	0 0	0	0 0	0	0	0	0	0 0	0	0 0
ID																					
Α	RW EVENTS_RXDREADY				Т	WI R	XD by	/te re	ceive	d											
		NotGenerated	0		E	vent	not g	enera	ated												
		Generated	1		E	vent	gene	rated													

6.20.8.8 EVENTS_TXDSENT

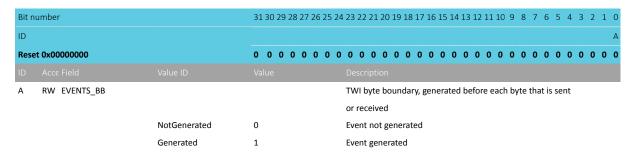
Address offset: 0x11C TWI TXD byte sent


Bit n	umber		313	30 2	9 28	27	26	25	24	23	22	21	20	19 1	18 1	17 1	6 1	5 14	4 13	3 12	11	10	9	8	7	6	5 .	4 3	3 2	1	0
ID																															Α
Rese	t 0x00000000		0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0 (0	0	0
ID										Des																					
Α	RW EVENTS_TXDSENT									TW	/I T	ΧD	byt	e se	ent																
		NotGenerated	0							Eve	nt	not	ge	ner	ate	d															
		Generated	1							Eve	ent	gen	era	ited	I																

6.20.8.9 EVENTS_ERROR

Address offset: 0x124

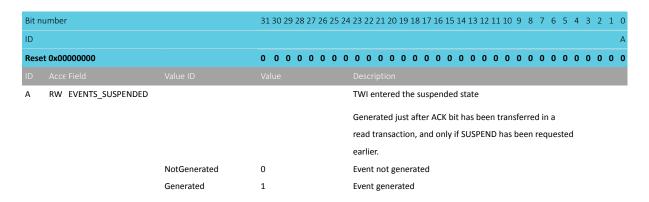
TWI error



6.20.8.10 EVENTS_BB

Address offset: 0x138

TWI byte boundary, generated before each byte that is sent or received



6.20.8.11 EVENTS_SUSPENDED

Address offset: 0x148

TWI entered the suspended state

Generated just after ACK bit has been transferred in a read transaction, and only if SUSPEND has been requested earlier.

6.20.8.12 SHORTS

Address offset: 0x200

Shortcuts between local events and tasks

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				ВА
Rese	t 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW BB_SUSPEND			Shortcut between event BB and task SUSPEND
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
В	RW BB_STOP			Shortcut between event BB and task STOP
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut

6.20.8.13 INTENSET

Address offset: 0x304

Enable interrupt

Bit n	umber		31 30 29 28 27 26 25	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				F E D C B A
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Α	RW STOPPED			Write '1' to enable interrupt for event STOPPED
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
В	RW RXDREADY			Write '1' to enable interrupt for event RXDREADY
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
С	RW TXDSENT			Write '1' to enable interrupt for event TXDSENT
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
D	RW ERROR			Write '1' to enable interrupt for event ERROR
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
E	RW BB			Write '1' to enable interrupt for event BB
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
F	RW SUSPENDED			Write '1' to enable interrupt for event SUSPENDED
				Generated just after ACK bit has been transferred in a
				read transaction, and only if SUSPEND has been requested
				earlier.
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

6.20.8.14 INTENCLR

Address offset: 0x308

Disable interrupt

Bit r	umber		31 30 29 28 27 26	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				F E D C B A
Res	et 0x00000000		0 0 0 0 0 0	000000000000000000000000000000000000000
ID		Value ID		
A	RW STOPPED			Write '1' to disable interrupt for event STOPPED
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
В	RW RXDREADY			Write '1' to disable interrupt for event RXDREADY
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
С	RW TXDSENT			Write '1' to disable interrupt for event TXDSENT
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
D	RW ERROR			Write '1' to disable interrupt for event ERROR
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Ε	RW BB			Write '1' to disable interrupt for event BB
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
F	RW SUSPENDED			Write '1' to disable interrupt for event SUSPENDED
				Generated just after ACK bit has been transferred in a
				read transaction, and only if SUSPEND has been requested
				earlier.
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

6.20.8.15 ERRORSRC

Address offset: 0x4C4

Error source

Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				СВА
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW OVERRUN			Overrun error
				A new byte was received before previous byte got read by
				software from the RXD register. (Previous data is lost)
		NotPresent	0	Read: no overrun occured
		Present	1	Read: overrun occured
В	RW ANACK			NACK received after sending the address (write '1' to clear)
		NotPresent	0	Read: error not present
		Present	1	Read: error present
С	RW DNACK			NACK received after sending a data byte (write '1' to clear)
		NotPresent	0	Read: error not present
		Present	1	Read: error present

6.20.8.16 ENABLE

Address offset: 0x500

Enable TWI

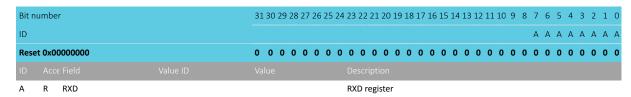
Bit number		31 30 29 28 27 26	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			ААА
Reset 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A RW ENABLE			Enable or disable TWI
	Disabled	0	Disable TWI
	Enabled	5	Enable TWI

6.20.8.17 PSEL.SCL

Address offset: 0x508
Pin select for SCL

Bit n	umber		31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	АААА
Rese	et OxFFFFFFF		1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				Description
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect

6.20.8.18 PSEL.SDA

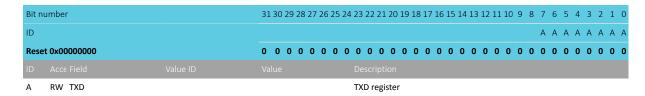

Address offset: 0x50C Pin select for SDA

Bit no	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	ААААА
Rese	t OxFFFFFFF		1 1 1 1 1 1 1 1	. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				Description
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect

6.20.8.19 RXD

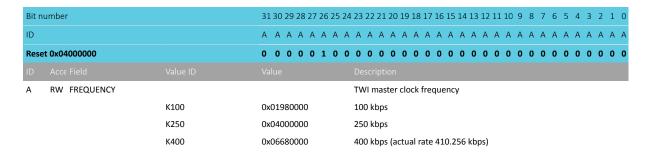
Address offset: 0x518

RXD register



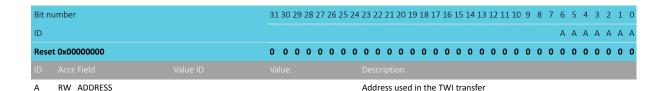
6.20.8.20 TXD

Address offset: 0x51C


TXD register

6.20.8.21 FREQUENCY

Address offset: 0x524


TWI frequency. Accuracy depends on the HFCLK source selected.

6.20.8.22 ADDRESS

Address offset: 0x588

Address used in the TWI transfer

6.20.9 Electrical specification

6.20.9.1 TWI interface electrical specifications

Symbol	Description	Min.	Тур.	Max.	Units
$f_{TWI,SCL}$	Bit rates for TWI ³¹	100		400	kbps
t _{TWI,START}	Time from STARTRX/STARTTX task to transmission started		1.5		μs

³¹ High bit rates or stronger pull-ups may require GPIOs to be set as High Drive, see GPIO chapter for more details.

6.20.9.2 Two Wire Interface (TWI) timing specifications

Symbol	Description	Min.	Тур.	Max.	Units
t _{TWI,SU_DAT}	Data setup time before positive edge on SCL – all modes	300			ns
t _{TWI,HD_DAT}	Data hold time after negative edge on SCL – all modes	500			ns
$t_{TWI,HD_STA,100kbps}$	TWI master hold time for START and repeated START	10000			ns
	condition, 100 kbps				
t _{TWI,HD_STA,250kbps}	TWI master hold time for START and repeated START	4000			ns
	condition, 250kbps				
$t_{TWI,HD_STA,400kbps}$	TWI master hold time for START and repeated START	2500			ns
	condition, 400 kbps				
$t_{TWI,SU_STO,100kbps}$	TWI master setup time from SCL high to STOP condition, 100	5000			ns
	kbps				
$t_{TWI,SU_STO,250kbps}$	TWI master setup time from SCL high to STOP condition, 250	2000			ns
	kbps				
$t_{TWI,SU_STO,400kbps}$	TWI master setup time from SCL high to STOP condition, 400	1250			ns
	kbps				
t _{TWI,BUF,100kbps}	TWI master bus free time between STOP and START	5800			ns
	conditions, 100 kbps				
t _{TWI,BUF,250kbps}	TWI master bus free time between STOP and START	2700			ns
	conditions, 250 kbps				
t _{TWI,BUF,400kbps}	TWI master bus free time between STOP and START	2100			ns
	conditions, 400 kbps				

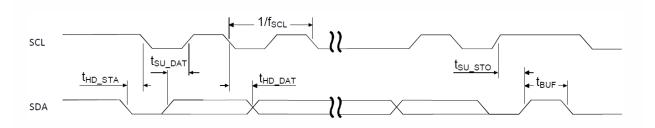


Figure 110: TWI timing diagram, 1 byte transaction

6.21 TIMER — Timer/counter

The TIMER can operate in two modes: timer and counter.

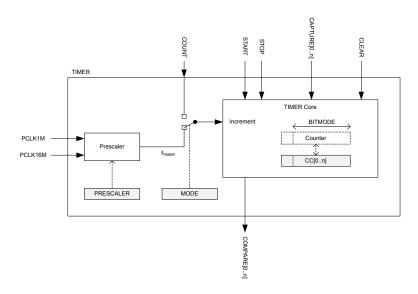


Figure 111: Block schematic for timer/counter

The timer/counter runs on the high-frequency clock source (HFCLK) and includes a four-bit (1/2X) prescaler that can divide the timer input clock from the HFCLK controller. Clock source selection between PCLK16M and PCLK1M is automatic according to TIMER base frequency set by the prescaler. The TIMER base frequency is always given as 16 MHz divided by the prescaler value.

The PPI system allows a TIMER event to trigger a task of any other system peripheral of the device. The PPI system also enables the TIMER task/event features to generate periodic output and PWM signals to any GPIO. The number of input/outputs used at the same time is limited by the number of GPIOTE channels.

The TIMER can operate in two modes, Timer mode and Counter mode. In both modes, the TIMER is started by triggering the START task, and stopped by triggering the STOP task. After the timer is stopped the timer can resume timing/counting by triggering the START task again. When timing/counting is resumed, the timer will continue from the value it had prior to being stopped.

In Timer mode, the TIMER's internal Counter register is incremented by one for every tick of the timer frequency f_{TIMER} as illustrated in Block schematic for timer/counter on page 303. The timer frequency is derived from PCLK16M as shown below, using the values specified in the PRESCALER register:

```
f<sub>TIMER</sub> = 16 MHz / (2<sup>PRESCALER</sup>)
```

When $f_{TIMER} \ll 1$ MHz the TIMER will use PCLK1M instead of PCLK16M for reduced power consumption.

In counter mode, the TIMER's internal Counter register is incremented by one each time the COUNT task is triggered, that is, the timer frequency and the prescaler are not utilized in counter mode. Similarly, the COUNT task has no effect in Timer mode.

The TIMER's maximum value is configured by changing the bit-width of the timer in the BITMODE on page 308 register.

PRESCALER on page 308 and the BITMODE on page 308 must only be updated when the timer is stopped. If these registers are updated while the TIMER is started then this may result in unpredictable behavior.

When the timer is incremented beyond its maximum value the Counter register will overflow and the TIMER will automatically start over from zero.

The Counter register can be cleared, that is, its internal value set to zero explicitly, by triggering the CLEAR task

The TIMER implements multiple capture/compare registers.

Independent of prescaler setting the accuracy of the TIMER is equivalent to one tick of the timer frequency f_{TIMER} as illustrated in Block schematic for timer/counter on page 303.

6.21.1 Capture

The TIMER implements one capture task for every available capture/compare register.

Every time the CAPTURE[n] task is triggered, the Counter value is copied to the CC[n] register.

6.21.2 Compare

The TIMER implements one COMPARE event for every available capture/compare register.

A COMPARE event is generated when the Counter is incremented and then becomes equal to the value specified in one of the capture compare registers. When the Counter value becomes equal to the value specified in a capture compare register CC[n], the corresponding compare event COMPARE[n] is generated.

BITMODE on page 308 specifies how many bits of the Counter register and the capture/compare register that are used when the comparison is performed. Other bits will be ignored.

6.21.3 Task delays

After the TIMER is started, the CLEAR task, COUNT task and the STOP task will guarantee to take effect within one clock cycle of the PCLK16M.

6.21.4 Task priority

If the START task and the STOP task are triggered at the same time, that is, within the same period of PCLK16M, the STOP task will be prioritized.

6.21.5 Registers

Base address	Peripheral	Instance	Description	Configuration
0x40008000	TIMER	TIMER0	Timer 0	This timer instance has 4 CC registers
				(CC[03])
0x40009000	TIMER	TIMER1	Timer 1	This timer instance has 4 CC registers
				(CC[03])
0x4000A000	TIMER	TIMER2	Timer 2	This timer instance has 4 CC registers
				(CC[03])
0x4001A000	TIMER	TIMER3	Timer 3	This timer instance has 6 CC registers
				(CC[05])

Table 91: Instances

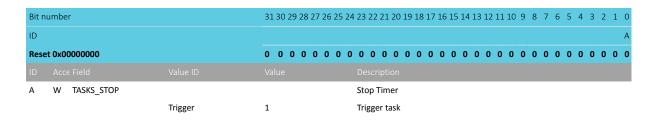
Register	Offset	Description	
TASKS_START	0x000	Start Timer	
TASKS_STOP	0x004	Stop Timer	
TASKS_COUNT	0x008	Increment Timer (Counter mode only)	
TASKS_CLEAR	0x00C	Clear time	
TASKS_SHUTDOWN	0x010	Shut down timer	Deprecated
TASKS_CAPTURE[0]	0x040	Capture Timer value to CC[0] register	

Register	Offset	Description
TASKS_CAPTURE[1]	0x044	Capture Timer value to CC[1] register
TASKS_CAPTURE[2]	0x048	Capture Timer value to CC[2] register
TASKS_CAPTURE[3]	0x04C	Capture Timer value to CC[3] register
TASKS_CAPTURE[4]	0x050	Capture Timer value to CC[4] register
TASKS_CAPTURE[5]	0x054	Capture Timer value to CC[5] register
EVENTS_COMPARE[0]	0x140	Compare event on CC[0] match
EVENTS_COMPARE[1]	0x144	Compare event on CC[1] match
EVENTS_COMPARE[2]	0x148	Compare event on CC[2] match
EVENTS_COMPARE[3]	0x14C	Compare event on CC[3] match
EVENTS_COMPARE[4]	0x150	Compare event on CC[4] match
EVENTS_COMPARE[5]	0x154	Compare event on CC[5] match
SHORTS	0x200	Shortcuts between local events and tasks
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt
MODE	0x504	Timer mode selection
BITMODE	0x508	Configure the number of bits used by the TIMER
PRESCALER	0x510	Timer prescaler register
CC[0]	0x540	Capture/Compare register 0
CC[1]	0x544	Capture/Compare register 1
CC[2]	0x548	Capture/Compare register 2
CC[3]	0x54C	Capture/Compare register 3
CC[4]	0x550	Capture/Compare register 4
CC[5]	0x554	Capture/Compare register 5

Table 92: Register overview

6.21.5.1 TASKS_START

Address offset: 0x000

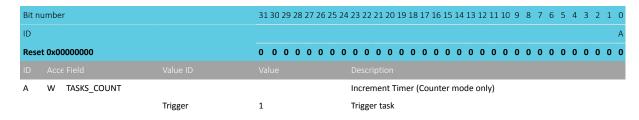

Start Timer

Bit r	number		31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Res	et 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	W TASKS_START			Start Timer
		Trigger	1	Trigger task

6.21.5.2 TASKS_STOP

Address offset: 0x004

Stop Timer

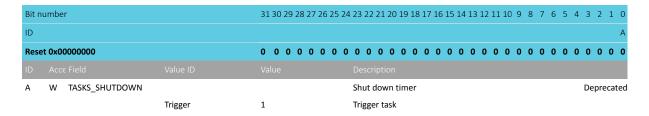


6.21.5.3 TASKS_COUNT

Address offset: 0x008

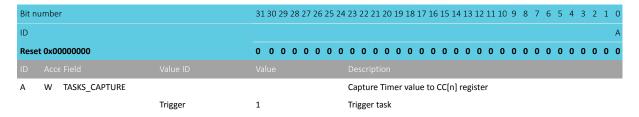
Increment Timer (Counter mode only)

6.21.5.4 TASKS CLEAR


Address offset: 0x00C

Clear time

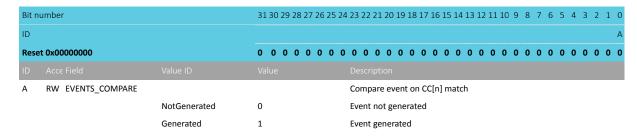
Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	W TASKS_CLEAR			Clear time
		Trigger	1	Trigger task


6.21.5.5 TASKS_SHUTDOWN (Deprecated)

Address offset: 0x010 Shut down timer

6.21.5.6 TASKS_CAPTURE[n] (n=0..5)

Address offset: $0x040 + (n \times 0x4)$ Capture Timer value to CC[n] register



6.21.5.7 EVENTS_COMPARE[n] (n=0..5)

Address offset: $0x140 + (n \times 0x4)$

Compare event on CC[n] match

6.21.5.8 SHORTS

Address offset: 0x200

Shortcuts between local events and tasks

Bit number	31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		L K J I H G F E D C B A
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		Description
A-F RW COMPARE[i]_CLEAR		Shortcut between event COMPARE[i] and task CLEAR
(i=05)		
Disabled	0	Disable shortcut
Enabled	1	Enable shortcut
G-L RW COMPARE[i]_STOP		Shortcut between event COMPARE[i] and task STOP
(i=05)		
Disabled	0	Disable shortcut
Enabled	1	Enable shortcut

6.21.5.9 INTENSET

Address offset: 0x304

Enable interrupt

Bit number	31 30 29 28 27	7 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		F E D C B A
Reset 0x00000000	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value		Description
A-F RW COMPARE[i] (i=05)		Write '1' to enable interrupt for event COMPARE[i]
Set	1	Enable
Disab	oled 0	Read: Disabled
Enab	led 1	Read: Enabled

6.21.5.10 INTENCLR

Address offset: 0x308

Disable interrupt

Bit number	31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		F E D C B A
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		Description
A-F RW COMPARE[i] (i=05)		Write '1' to disable interrupt for event COMPARE[i]
Clear	1	Disable
Disabled	0	Read: Disabled
Enabled	1	Read: Enabled

6.21.5.11 MODE

Address offset: 0x504
Timer mode selection

Bit r	umber		31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2	1 0
ID					A A
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0
ID					
Α	RW MODE			Timer mode	
		Timer	0	Select Timer mode	
		Counter	1	Select Counter mode Depre	cated
		LowPowerCounter	2	Select Low Power Counter mode	

6.21.5.12 BITMODE

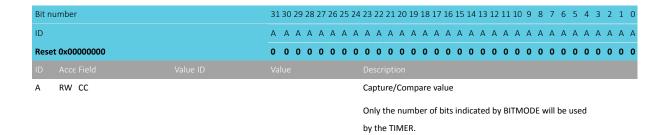
Address offset: 0x508

Configure the number of bits used by the TIMER

Bit number		31 30 2	29 28 27 26 25	24 23 2	22 21 20	0 19 1	L8 17	16	15 1	4 13	12 13	1 10	9	8 7	6	5	4	3	2 1	. 0
ID																			A	A
Reset 0x0000	0000	0 0	0 0 0 0	0 0	0 0 0	0	0 0	0	0 0	0	0 0	0	0	0 (0	0	0	0 (0 (0
ID Acce Fi																				
A RW BI	TMODE			Tim	er bit w	vidth														
	16Bit	0		16 l	bit time	r bit	widtl	h												
	08Bit	1		8 bi	it timer	bit w	idth													
	24Bit	2		24 I	bit time	r bit	widtl	n												
	32Bit	3		32 I	bit time	r bit	widtl	h												

6.21.5.13 PRESCALER

Address offset: 0x510
Timer prescaler register


ID	Acce Field	Value Description	
Reset	: 0x00000004	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0
ID			AAAA
Bit nu	ımber	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4	3 2 1 0

6.21.5.14 CC[n] (n=0..5)

Address offset: $0x540 + (n \times 0x4)$

Capture/Compare register n

$6.22 \text{ TWIM} - I^2 \text{C}$ compatible two-wire interface master with EasyDMA

TWI master with EasyDMA (TWIM) is a two-wire half-duplex master which can communicate with multiple slave devices connected to the same bus

Listed here are the main features for TWIM:

- I²C compatible
- Supported baud rates: 100, 250, 400 kbps
- Support for clock stretching (non I²C compliant)
- EasyDMA

The two-wire interface can communicate with a bi-directional wired-AND bus with two lines (SCL, SDA). The protocol makes it possible to interconnect up to 127 individually addressable devices. TWIM is not compatible with CBUS.

The GPIOs used for each two-wire interface line can be chosen from any GPIO on the device and are independently configurable. This enables great flexibility in device pinout and efficient use of board space and signal routing.

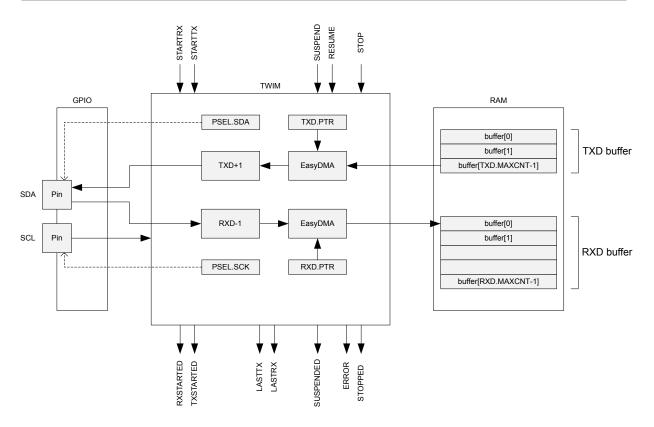


Figure 112: TWI master with EasyDMA

A typical TWI setup consists of one master and one or more slaves. For an example, see A typical TWI setup comprising one master and three slaves on page 310. This TWIM is only able to operate as a single master on the TWI bus. Multi-master bus configuration is not supported.

Figure 113: A typical TWI setup comprising one master and three slaves

This TWI master supports clock stretching performed by the slaves. Note that the SCK pulse following a stretched clock cycle may be shorter than specified by the I2C specification.

The TWI master is started by triggering the STARTTX or STARTRX tasks, and stopped by triggering the STOP task. The TWI master will generate a STOPPED event when it has stopped following a STOP task. The TWI master cannot get stopped while it is suspended, so the STOP task has to be issued after the TWI master has been resumed.

After the TWI master is started, the STARTTX task or the STARTRX task should not be triggered again before the TWI master has stopped, i.e. following a LASTRX, LASTTX or STOPPED event.

If a NACK is clocked in from the slave, the TWI master will generate an ERROR event.

6.22.1 EasyDMA

The TWIM implements EasyDMA for accessing RAM without CPU involvement.

The TWIM peripheral implements the following EasyDMA channels:

Channel	Туре	Register Cluster
TXD	READER	TXD
RXD	WRITER	RXD

Table 93: TWIM EasyDMA Channels

For detailed information regarding the use of EasyDMA, see EasyDMA on page 39.

The .PTR and .MAXCNT registers are double-buffered. They can be updated and prepared for the next RX/TX transmission immediately after having received the RXSTARTED/TXSTARTED event.

The STOPPED event indicates that EasyDMA has finished accessing the buffer in RAM.

6.22.2 Master write sequence

A TWI master write sequence is started by triggering the STARTTX task. After the STARTTX task has been triggered, the TWI master will generate a start condition on the TWI bus, followed by clocking out the address and the READ/WRITE bit set to 0 (WRITE=0, READ=1).

The address must match the address of the slave device that the master wants to write to. The READ/ WRITE bit is followed by an ACK/NACK bit (ACK=0 or NACK=1) generated by the slave.

After receiving the ACK bit, the TWI master will clock out the data bytes found in the transmit buffer located in RAM at the address specified in the TXD.PTR register. Each byte clocked out from the master will be followed by an ACK/NACK bit clocked in from the slave.

A typical TWI master write sequence is illustrated in TWI master writing data to a slave on page 311. Occurrence 2 in the figure illustrates clock stretching performed by the TWI master following a SUSPEND task.

A SUSPENDED event indicates that the SUSPEND task has taken effect; this event can be used to synchronize the software.

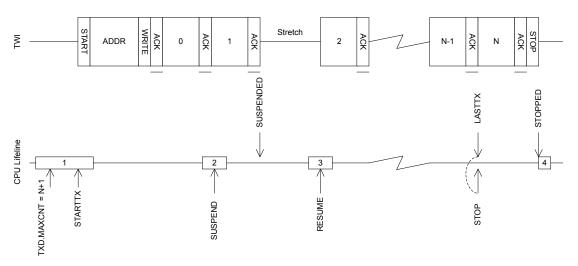


Figure 114: TWI master writing data to a slave

The TWI master will generate a LASTTX event when it starts to transmit the last byte, this is illustrated in TWI master writing data to a slave on page 311

The TWI master is stopped by triggering the STOP task, this task should be triggered during the transmission of the last byte to secure that the TWI will stop as fast as possible after sending the last byte. It is safe to use the shortcut between LASTTX and STOP to accomplish this.

Note that the TWI master does not stop by itself when the whole RAM buffer has been sent, or when an error occurs. The STOP task must be issued, through the use of a local or PPI shortcut, or in software as part of the error handler.

The TWI master cannot get stopped while it is suspended, so the STOP task has to be issued after the TWI master has been resumed.

6.22.3 Master read sequence

A TWI master read sequence is started by triggering the STARTRX task. After the STARTRX task has been triggered the TWI master will generate a start condition on the TWI bus, followed by clocking out the address and the READ/WRITE bit set to 1 (WRITE = 0, READ = 1). The address must match the address of the slave device that the master wants to read from. The READ/WRITE bit is followed by an ACK/NACK bit (ACK=0 or NACK = 1) generated by the slave.

After having sent the ACK bit the TWI slave will send data to the master using the clock generated by the master.

Data received will be stored in RAM at the address specified in the RXD.PTR register. The TWI master will generate an ACK after all but the last byte received from the slave. The TWI master will generate a NACK after the last byte received to indicate that the read sequence shall stop.

A typical TWI master read sequence is illustrated in The TWI master reading data from a slave on page 313. Occurrence 2 in the figure illustrates clock stretching performed by the TWI master following a SUSPEND task.

A SUSPENDED event indicates that the SUSPEND task has taken effect; this event can be used to synchronize the software.

The TWI master will generate a LASTRX event when it is ready to receive the last byte, this is illustrated in The TWI master reading data from a slave on page 313. If RXD.MAXCNT > 1 the LASTRX event is generated after sending the ACK of the previously received byte. If RXD.MAXCNT = 1 the LASTRX event is generated after receiving the ACK following the address and READ bit.

The TWI master is stopped by triggering the STOP task, this task must be triggered before the NACK bit is supposed to be transmitted. The STOP task can be triggered at any time during the reception of the last byte. It is safe to use the shortcut between LASTRX and STOP to accomplish this.

Note that the TWI master does not stop by itself when the RAM buffer is full, or when an error occurs. The STOP task must be issued, through the use of a local or PPI shortcut, or in software as part of the error handler.

The TWI master cannot get stopped while it is suspended, so the STOP task has to be issued after the TWI master has been resumed.

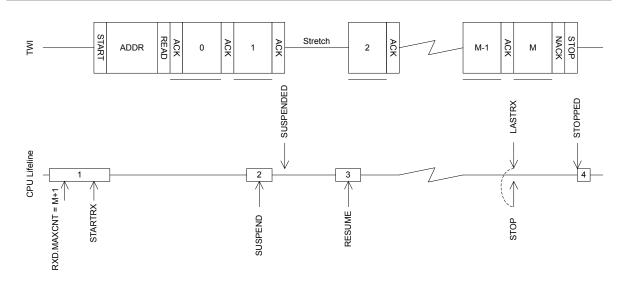


Figure 115: The TWI master reading data from a slave

6.22.4 Master repeated start sequence

A typical repeated start sequence is one in which the TWI master writes two bytes to the slave followed by reading four bytes from the slave. This example uses shortcuts to perform the simplest type of repeated start sequence, i.e. one write followed by one read. The same approach can be used to perform a repeated start sequence where the sequence is read followed by write.

The figure A repeated start sequence, where the TWI master writes two bytes followed by reading 4 bytes from the slave on page 313 illustrates this:

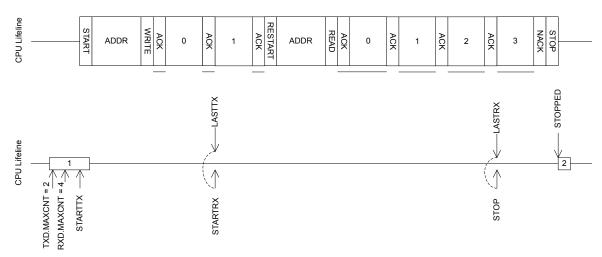


Figure 116: A repeated start sequence, where the TWI master writes two bytes followed by reading 4 bytes from the slave

If a more complex repeated start sequence is needed and the TWI firmware drive is serviced in a low priority interrupt it may be necessary to use the SUSPEND task and SUSPENDED event to guarantee that the correct tasks are generated at the correct time. This is illustrated in A double repeated start sequence using the SUSPEND task to secure safe operation in low priority interrupts on page 314.

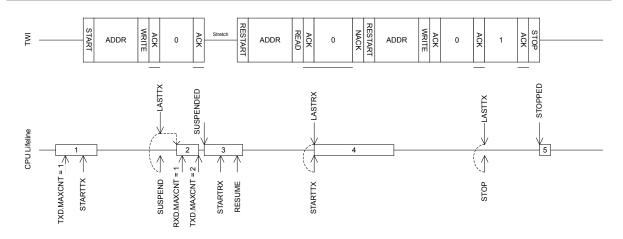


Figure 117: A double repeated start sequence using the SUSPEND task to secure safe operation in low priority interrupts

6.22.5 Low power

When putting the system in low power and the peripheral is not needed, lowest possible power consumption is achieved by stopping, and then disabling the peripheral.

The STOP task may not be always needed (the peripheral might already be stopped), but if it is sent, software shall wait until the STOPPED event was received as a response before disabling the peripheral through the ENABLE register.

6.22.6 Master mode pin configuration

The SCL and SDA signals associated with the TWI master are mapped to physical pins according to the configuration specified in the PSEL.SCL and PSEL.SDA registers respectively.

The PSEL.SCL and PSEL.SDA registers and their configurations are only used as long as the TWI master is enabled, and retained only as long as the device is in ON mode. When the peripheral is disabled, the pins will behave as regular GPIOs, and use the configuration in their respective OUT bit field and PIN_CNF[n] register. PSEL.SCL, PSEL.SDA must only be configured when the TWI master is disabled.

To secure correct signal levels on the pins used by the TWI master when the system is in OFF mode, and when the TWI master is disabled, these pins must be configured in the GPIO peripheral as described in GPIO configuration before enabling peripheral on page 314.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in unpredictable behavior.

TWI master signal	TWI master pin	Direction	Output value	Drive strength
SCL	As specified in PSEL.SCL	Input	Not applicable	SOD1
SDA	As specified in PSEL.SDA	Input	Not applicable	SOD1

Table 94: GPIO configuration before enabling peripheral

6.22.7 Registers

Base address	Peripheral	Instance	Description	Configuration	
0x40003000	TWIM	TWIM0	Two-wire interface master 0		
0x40004000	TWIM	TWIM1	Two-wire interface master 1		

Table 95: Instances

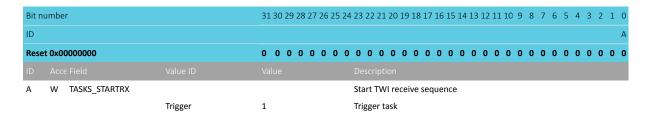

Register	Offset	Description
TASKS_STARTRX	0x000	Start TWI receive sequence
TASKS_STARTTX	0x008	Start TWI transmit sequence
TASKS_STOP	0x014	Stop TWI transaction. Must be issued while the TWI master is not suspended.
TASKS_SUSPEND	0x01C	Suspend TWI transaction
TASKS_RESUME	0x020	Resume TWI transaction
EVENTS_STOPPED	0x104	TWI stopped
EVENTS_ERROR	0x124	TWI error
EVENTS_SUSPENDED	0x148	Last byte has been sent out after the SUSPEND task has been issued, TWI traffic is now
		suspended.
EVENTS_RXSTARTED	0x14C	Receive sequence started
EVENTS_TXSTARTED	0x150	Transmit sequence started
EVENTS_LASTRX	0x15C	Byte boundary, starting to receive the last byte
EVENTS_LASTTX	0x160	Byte boundary, starting to transmit the last byte
SHORTS	0x200	Shortcuts between local events and tasks
INTEN	0x300	Enable or disable interrupt
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt
ERRORSRC	0x4C4	Error source
ENABLE	0x500	Enable TWIM
PSEL.SCL	0x508	Pin select for SCL signal
PSEL.SDA	0x50C	Pin select for SDA signal
FREQUENCY	0x524	TWI frequency. Accuracy depends on the HFCLK source selected.
RXD.PTR	0x534	Data pointer
RXD.MAXCNT	0x538	Maximum number of bytes in receive buffer
RXD.AMOUNT	0x53C	Number of bytes transferred in the last transaction
RXD.LIST	0x540	EasyDMA list type
TXD.PTR	0x544	Data pointer
TXD.MAXCNT	0x548	Maximum number of bytes in transmit buffer
TXD.AMOUNT	0x54C	Number of bytes transferred in the last transaction
TXD.LIST	0x550	EasyDMA list type
ADDRESS	0x588	Address used in the TWI transfer

Table 96: Register overview

6.22.7.1 TASKS_STARTRX

Address offset: 0x000

Start TWI receive sequence

6.22.7.2 TASKS_STARTTX

Address offset: 0x008

Start TWI transmit sequence

Bit n	um	bei			31 3	0 29	28 2	27 26	5 25	24	23 2	22 2	21 2	0 19	18	17	16 1	.5 1	4 13	3 12	2 11	10	9	8	7	6	5	4	3 2	2 1	. 0
ID																															Α
Rese	t 0:	x00	000000		0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0 (0	0	0	0	0	0	0	0	0	0	0 0	0	0
ID											Des																				
Α	٧	V	TASKS_STARTTX								Star	t T	WI t	ran	mit	sec	que	nce													
				Trigger	1						Trig	ger	tas	k																	

6.22.7.3 TASKS_STOP

Address offset: 0x014

Stop TWI transaction. Must be issued while the TWI master is not suspended.

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	W TASKS_STOP			Stop TWI transaction. Must be issued while the TWI master
				is not suspended.
		Trigger	1	Trigger task

6.22.7.4 TASKS_SUSPEND

Address offset: 0x01C
Suspend TWI transaction

Bit n	um	ber		31	30	29 :	28 2	7 26	25 2	24 :	23 2	2 2	1 20	0 19	18	17	16	15	14 1	3 1	2 11	10	9	3 7	' 6	5	4	3	2	1 0
ID																														Α
Rese	et O	x00000000		0	0	0	0 0	0	0	0	0 () (0 0	0	0	0	0	0	0 (0	0	0	0	0 0	0	0	0	0	0 (0 0
ID																														
Α	W	V TASKS_SUSPEND								!	Susp	en	d TV	WI t	ran	sac	tion	1												
			Trigger	1							Trigg	ger	task	k																

6.22.7.5 TASKS_RESUME

Address offset: 0x020
Resume TWI transaction

Bit n	umb	per		31 30 29 28 27 2	26 25 24	1 23 2	2 2	1 20	19	18	17 :	16 1	15 3	14 1	3 1	2 11	10	9	8	7	6	5	4	3	2	1 0
ID																										А
Rese	t Ox	0000000		0 0 0 0 0	0 0 0	0 (0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0 0
ID																										
Α	W	TASKS_RESUME				Resi	ıme	TW.	/I tr	ans	acti	on														
			Trigger	1		Trigg	ger	task																		

6.22.7.6 EVENTS_STOPPED

Address offset: 0x104

TWI stopped

Bit number		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			А
Reset 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A RW EVENTS_STOPPED			TWI stopped
	NotGenerated	0	Event not generated
	Generated	1	Event generated

6.22.7.7 EVENTS_ERROR

Address offset: 0x124

TWI error

Bit n	umber		31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	t 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW EVENTS_ERROR			TWI error
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.22.7.8 EVENTS_SUSPENDED

Address offset: 0x148

Last byte has been sent out after the SUSPEND task has been issued, TWI traffic is now suspended.

Bit n	umber		31	30 2	29 2	28 2	27 2	26 2	25	24	23	3 22	2 2	1 2	0 :	19	18	17	16	15	5 1	4 1	3 1	2 1	.1 1	.0	9	8	7	6 !	5	4 3	3 2	2 1	0
ID																																			Α
Rese	t 0x00000000		0	0	0	0 (0 (0	0	0	0	0) (0	0	0	0	0	0	0	C	() (0	0	0	0	0)	0 (0	0 (0	0	0
ID																																			
Α	RW EVENTS_SUSPENDED										La	st	by	te l	nas	s be	eer	ı se	ent	οι	ıt a	fte	r tl	he	SU:	PE	ND	tas	k ł	nas					
											be	een	ı is	sue	ed,	ΤV	VI 1	tra	ffic	is	no	w s	us	pei	nde	d.									
		NotGenerated	0								Ev	/en	it n	ot	ge	ne	rat	ed																	

6.22.7.9 EVENTS_RXSTARTED

Address offset: 0x14C
Receive sequence started

Bit n	umber		31	30	29	28	27	26 2	25 2	24 2	23 :	22	21 2	20 1	19 1	.8 1	7 1	6 1	5 14	4 13	12	11	10 9	9 8	3 7	6	5	4	3	2	1 0
ID																															Α
Rese	et 0x00000000		0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 () (0	0	0	0	0 (0 0	0	0	0	0	0	0	0 0
ID																															
Α	RW EVENTS_RXSTARTED									F	Rec	ceiv	e se	equ	iend	e s	tar	ted													
		NotGenerated	0							E	ve	ent	not	ge	ner	ate	d														
		Generated	1							E	ve	ent	gen	era	ited																

6.22.7.10 EVENTS_TXSTARTED

Address offset: 0x150

Transmit sequence started

Bit number		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			А
Reset 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A RW EVENTS_TXSTARTED			Transmit sequence started
	NotGenerated	0	Event not generated
	Generated	1	Event generated

6.22.7.11 EVENTS_LASTRX

Address offset: 0x15C

Byte boundary, starting to receive the last byte

Bit number			31 30	29 2	8 27 2	26 25	24 2	3 22 :	21 2	0 19	18 17	7 16	15 1	4 13	12 1	1 10	9 8	7	6	5	4 3	2	1 0
ID																							Α
Reset 0x00000	000		0 0	0 (0 (0 0	0 0	0	0 0	0 0	0 0	0	0 (0	0 0	0	0 0	0	0	0	0 0	0	0 0
ID Acce Fie																							
A RW EVI	NTS_LASTRX						В	yte b	oun	dary,	start	ing t	to re	ceive	the	last b	yte						
	No	tGenerated	0				E	vent	not (genei	ated												
	Ge	nerated	1				E	vent	gene	erate	b												

6.22.7.12 EVENTS_LASTTX

Address offset: 0x160

Byte boundary, starting to transmit the last byte

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW EVENTS_LASTTX			Byte boundary, starting to transmit the last byte
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.22.7.13 SHORTS

Address offset: 0x200

Shortcuts between local events and tasks

Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				F E D C B A
Rese	t 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW LASTTX_STARTRX			Shortcut between event LASTTX and task STARTRX
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
В	RW LASTTX_SUSPEND			Shortcut between event LASTTX and task SUSPEND
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
С	RW LASTTX_STOP			Shortcut between event LASTTX and task STOP
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut

Bit n	umber		31 30 2	9 28 2	27 2	6 25	24	23	22 2	21 20	0 19	18	17 1	16 1	15 1	4 13	12	11 1	10 9	9 8	3 7	6	5	4	3 2	1	0
ID																	F	Е	D (C E	S A						
Rese	t 0x00000000		0 0 0	0 0	0 0	0	0	0	0	0 0	0	0	0	0	0 (0	0	0	0 () (0	0	0	0	0 0	0	0
ID																											
D	RW LASTRX_STARTTX							Sho	ortcı	ut b	etw	een	eve	nt	LAS	ΓRX	and	tas	c ST.	AR1	TX						
		Disabled	0					Dis	sable	sho	ortc	ut															
		Enabled	1					Ena	able	sho	rtcu	ıt															
Ε	RW LASTRX_SUSPEND							Sho	ortcı	ut b	etw	een	eve	nt	LAS	ΓRX	and	tas	k SU	JSPI	END	1					
		Disabled	0					Dis	sable	sho	ortc	ut															
		Enabled	1					Ena	able	sho	rtcu	ıt															
F	RW LASTRX_STOP							Sho	ortcı	ut b	etw	een	eve	nt	LAS	ΓRX	and	tas	c ST	OP							
		Disabled	0					Dis	sable	sho	ortc	ut															
		Enabled	1					Ena	able	sho	rtcu	ıt															

6.22.7.14 INTEN

Address offset: 0x300

Enable or disable interrupt

Bit n	umber		31 30 29 28 27 26 25 2	
ID				JI H G F D A
Rese	t 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Α	RW STOPPED			Enable or disable interrupt for event STOPPED
		Disabled	0	Disable
		Enabled	1	Enable
D	RW ERROR			Enable or disable interrupt for event ERROR
		Disabled	0	Disable
		Enabled	1	Enable
F	RW SUSPENDED			Enable or disable interrupt for event SUSPENDED
		Disabled	0	Disable
		Enabled	1	Enable
G	RW RXSTARTED			Enable or disable interrupt for event RXSTARTED
		Disabled	0	Disable
		Enabled	1	Enable
Н	RW TXSTARTED			Enable or disable interrupt for event TXSTARTED
		Disabled	0	Disable
		Enabled	1	Enable
I	RW LASTRX			Enable or disable interrupt for event LASTRX
		Disabled	0	Disable
		Enabled	1	Enable
J	RW LASTTX			Enable or disable interrupt for event LASTTX
		Disabled	0	Disable
		Enabled	1	Enable

6.22.7.15 INTENSET

Address offset: 0x304

Enable interrupt

Bit r	number		31 30 29 28 27 26	25 2	4	23 22 21 2	20 19 :	18 1	7 1	5 1	5 14	4 1	3 1	2	11 1	10	9	8	7	6	5	4	3	2	1	0
ID				J	J	1 E	H G	F									D								Α	
Res	et 0x00000000		0 0 0 0 0 0	0 0	ס	0 0 0 0	0 0	0	0 0	0	0) () (0	0	0	0	0	0	0	0	0	0	0	0	0
Α	RW STOPPED					Write '1' to	o ena	ble	inte	rru	pt 1	for	eve	en	t ST	OF	PE	D							Π	Π
		Set	1			Enable																				
		Disabled	0			Read: Disa	abled																			
		Enabled	1			Read: Enal	bled																			
D	RW ERROR					Write '1' to	o ena	ble	inte	rru	pt 1	for	eve	en	t EF	RC	DR									
		Set	1			Enable																				
		Disabled	0			Read: Disa	abled																			
		Enabled	1			Read: Enal	bled																			
F	RW SUSPENDED					Write '1' to	o ena	ble	inte	rru	pt 1	for	eve	en	t SL	JSP	EN	DEI	D							
		Set	1			Enable																				
		Disabled	0			Read: Disa	abled																			
		Enabled	1			Read: Enal	bled																			
G	RW RXSTARTED					Write '1' to	o ena	ble	inte	rru	pt 1	for	eve	en	t RX	(ST	AR	ΓED)							
		Set	1			Enable																				
		Disabled	0			Read: Disa	abled																			
		Enabled	1			Read: Enal	bled																			
Н	RW TXSTARTED					Write '1' to	o ena	ble	inte	rru	pt 1	for	eve	en	t T>	ST	AR	ΓED								
		Set	1			Enable																				
		Disabled	0			Read: Disa	abled																			
		Enabled	1			Read: Enal	bled																			
I	RW LASTRX					Write '1' to	o ena	ble	inte	rru	pt 1	for	eve	en	t LA	ST	RX									
		Set	1			Enable																				
		Disabled	0			Read: Disa	abled																			
		Enabled	1			Read: Enal	bled																			
J	RW LASTTX					Write '1' to	o ena	ble	inte	rru	pt 1	for	eve	en	t LA	ST	ТХ									
		Set	1			Enable																				
		Disabled	0			Read: Disa	abled																			
		Enabled	1			Read: Enal	bled																			

6.22.7.16 INTENCLR

Address offset: 0x308

Disable interrupt

Bit r	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			J	I H G F D A
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW STOPPED			Write '1' to disable interrupt for event STOPPED
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
D	RW ERROR			Write '1' to disable interrupt for event ERROR
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
F	RW SUSPENDED			Write '1' to disable interrupt for event SUSPENDED
		Clear	1	Disable
		Disabled	0	Read: Disabled

Bit n	umber		31 30 29 28 27 26 25 24	¹ 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			J	I HGF D A
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
		Enabled	1	Read: Enabled
G	RW RXSTARTED			Write '1' to disable interrupt for event RXSTARTED
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Н	RW TXSTARTED			Write '1' to disable interrupt for event TXSTARTED
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
1	RW LASTRX			Write '1' to disable interrupt for event LASTRX
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
J	RW LASTTX			Write '1' to disable interrupt for event LASTTX
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

6.22.7.17 ERRORSRC

Address offset: 0x4C4

Error source

Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				СВА
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW OVERRUN			Overrun error
				A new byte was received before previous byte got
				transferred into RXD buffer. (Previous data is lost)
		NotReceived	0	Error did not occur
		Received	1	Error occurred
В	RW ANACK			NACK received after sending the address (write '1' to clear)
		NotReceived	0	Error did not occur
		Received	1	Error occurred
С	RW DNACK			NACK received after sending a data byte (write '1' to clear)
		NotReceived	0	Error did not occur
		Received	1	Error occurred

6.22.7.18 ENABLE

Address offset: 0x500

Enable TWIM

Bit number		31 30 29 28 2	27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			ААА
Reset 0x00000000		0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A RW ENABLE			Enable or disable TWIM
	Disabled	0	Disable TWIM
	Enabled	6	Enable TWIM

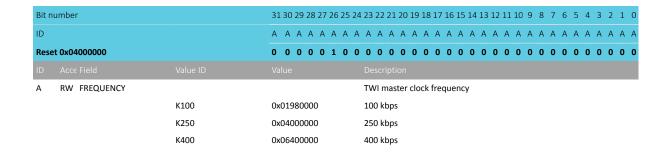
6.22.7.19 PSEL.SCL

Address offset: 0x508

Pin select for SCL signal

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	АААА
Rese	t OxFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				Description
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect

6.22.7.20 PSEL.SDA

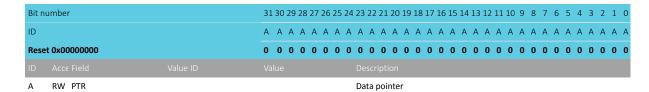

Address offset: 0x50C Pin select for SDA signal

Bit no	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0								
ID			C A A A									
Rese	t OxFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
ID				Description								
Α	RW PIN		[031]	Pin number								
С	RW CONNECT			Connection								
		Disconnected	1	Disconnect								
		Connected	0	Connect								

6.22.7.21 FREQUENCY

Address offset: 0x524

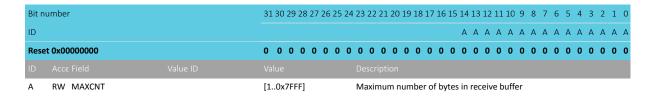
TWI frequency. Accuracy depends on the HFCLK source selected.



6.22.7.22 RXD.PTR

Address offset: 0x534

Data pointer



Note: See the memory chapter for details about which memories are available for EasyDMA.

6.22.7.23 RXD.MAXCNT

Address offset: 0x538

Maximum number of bytes in receive buffer

6.22.7.24 RXD.AMOUNT

Address offset: 0x53C

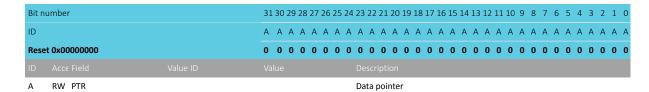
Number of bytes transferred in the last transaction

		of NACK error, includes the NACK'ed byte.
A R AMOUNT	[10x7FFF]	Number of bytes transferred in the last transaction. In case
Reset 0x00000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID		A A A A A A A A A A A A A A A A A A A
Bit number	31 30 29 28 27 26 25	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.22.7.25 RXD.LIST

Address offset: 0x540 EasyDMA list type

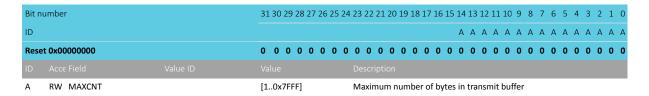
Bit number	31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		ААА
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		Description
A RW LIST		List type
Disabled	0	Disable EasyDMA list
ArrayList	1	Use array list



6.22.7.26 TXD.PTR

Address offset: 0x544

Data pointer



Note: See the memory chapter for details about which memories are available for EasyDMA.

6.22.7.27 TXD.MAXCNT

Address offset: 0x548

Maximum number of bytes in transmit buffer

6.22.7.28 TXD.AMOUNT

Address offset: 0x54C

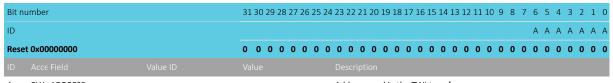
Number of bytes transferred in the last transaction

														orre		1				171-										
Α	R	Αľ	MOUNT			[1	0x7F	FF]				Nur	nbei	of b	yte	s tra	nsfe	erre	d in	the	last	tra	nsa	cti	on.	In c	ase			
ID																														
Rese	t Ox	0000	0000			0	0 0	0	0 (0	0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0 0
ID																			Α	4 Δ	A	Α	Α	Α	Α	Α.	ДД	Α	Α	A A
Bit nu	umb	er				31	30 29	28	27 2	6 2	5 24	23 2	22 23	1 20	19 1	.8 1	7 16	15	14 :	.3 1	2 11	. 10	9	8	7	6	5 4	3	2	1 0

6.22.7.29 TXD.LIST

Address offset: 0x550 EasyDMA list type

Bit number	31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		ААА
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		Description
A RW LIST		List type
Disabled	0	Disable EasyDMA list
ArrayList	1	Use array list



6.22.7.30 ADDRESS

Address offset: 0x588

Address used in the TWI transfer

A RW ADDRESS Address used in the TWI transfer

6.22.8 Electrical specification

6.22.8.1 TWIM interface electrical specifications

Symbol	Description	Min.	Тур.	Max.	Units
f _{TWIM,SCL}	Bit rates for TWIM ³²	100		400	kbps
t _{TWIM,START}	Time from STARTRX/STARTTX task to transmission started		1.5		μs

6.22.8.2 Two Wire Interface Master (TWIM) timing specifications

Symbol	Description	Min.	Тур.	Max.	Units
t _{TWIM,SU_DAT}	Data setup time before positive edge on SCL – all modes	300			ns
t _{TWIM,HD_DAT}	Data hold time after negative edge on SCL – all modes	500			ns
$t_{TWIM,HD_STA,100kbps}$	TWIM master hold time for START and repeated START	9937.5			ns
	condition, 100 kbps				
$t_{TWIM,HD_STA,250kbps}$	TWIM master hold time for START and repeated START	3937.5			ns
	condition, 250kbps				
$t_{\text{TWIM},\text{HD_STA},400\text{kbps}}$	TWIM master hold time for START and repeated START	2437.5			ns
	condition, 400 kbps				
$t_{TWIM,SU_STO,100kbps}$	TWIM master setup time from SCL high to STOP condition,	5000			ns
	100 kbps				
$t_{TWIM,SU_STO,250kbps}$	TWIM master setup time from SCL high to STOP condition,	2000			ns
	250 kbps				
$t_{TWIM,SU_STO,400kbps}$	TWIM master setup time from SCL high to STOP condition,	1250			ns
	400 kbps				
t _{TWIM,BUF,100kbps}	TWIM master bus free time between STOP and START	5800			ns
	conditions, 100 kbps				
t _{TWIM,BUF,250kbps}	TWIM master bus free time between STOP and START	2700			ns
	conditions, 250 kbps				
t _{TWIM,BUF,400kbps}	TWIM master bus free time between STOP and START	2100			ns
	conditions, 400 kbps				

High bit rates or stronger pull-ups may require GPIOs to be set as High Drive, see GPIO chapter for more details.

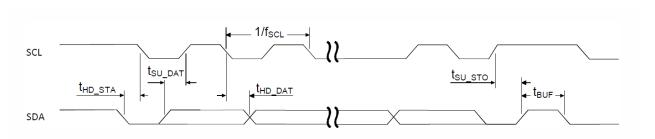


Figure 118: TWIM timing diagram, 1 byte transaction

6.22.9 Pullup resistor

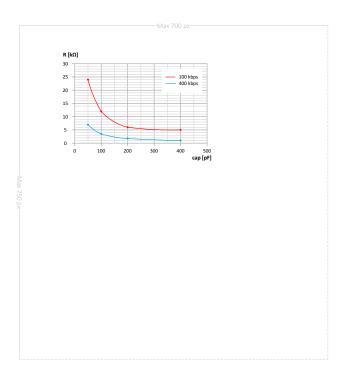


Figure 119: Recommended TWIM pullup value vs. line capacitance

- The I2C specification allows a line capacitance of 400 pF at most.
- The value of internal pullup resistor (R_{PU}) for nRF52820 can be found in GPIO General purpose input/output on page 130.

$6.23 \text{ TWIS} - I^2 \text{C}$ compatible two-wire interface slave with EasyDMA

TWI slave with EasyDMA (TWIS) is compatible with I²C operating at 100 kHz and 400 kHz. The TWI transmitter and receiver implement EasyDMA.

NORDIC

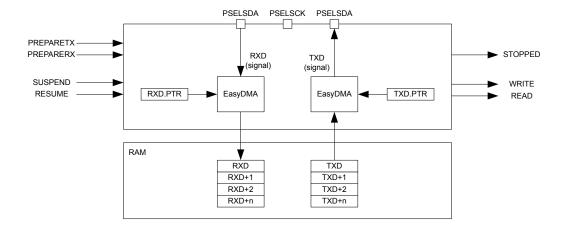


Figure 120: TWI slave with EasyDMA

A typical TWI setup consists of one master and one or more slaves. For an example, see A typical TWI setup comprising one master and three slaves on page 327. TWIS is only able to operate with a single master on the TWI bus.

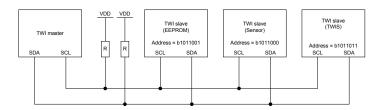


Figure 121: A typical TWI setup comprising one master and three slaves

The TWI slave state machine is illustrated in TWI slave state machine on page 328 and TWI slave state machine symbols on page 328 is explaining the different symbols used in the state machine.

Figure 122: TWI slave state machine

Symbol	Туре	Description
ENABLE	Register	The TWI slave has been enabled via the ENABLE register
PREPARETX	Task	The TASKS_PREPARETX task has been triggered
STOP	Task	The TASKS_STOP task has been triggered
PREPARERX	Task	The TASKS_PREPARERX task has been triggered
STOPPED	Event	The EVENTS_STOPPED event was generated
RXSTARTED	Event	The EVENTS_RXSTARTED event was generated
TXSTARTED	Event	The EVENTS_TXSTARTED event was generated
TX prepared	Internal	Internal flag indicating that a TASKS_PREPARETX task has been triggered. This flag is not visible to the
		user.
RX prepared	Internal	Internal flag indicating that a TASKS_PREPARERX task has been triggered. This flag is not visible to the
		user.
Unprepare TX	Internal	Clears the internal 'TX prepared' flag until next TASKS_PREPARETX task.
Unprepare RX	Internal	Clears the internal 'RX prepared' flag until next TASKS_PREPARERX task.
Stop sequence	TWI protocol	A TWI stop sequence was detected
Restart sequence	TWI protocol	A TWI restart sequence was detected

Table 97: TWI slave state machine symbols

The TWI slave supports clock stretching performed by the master.

The TWI slave operates in a low power mode while waiting for a TWI master to initiate a transfer. As long as the TWI slave is not addressed, it will remain in this low power mode.

NORDIC

To secure correct behaviour of the TWI slave, PSEL.SCL, PSEL.SDA, CONFIG and the ADDRESS[n] registers, must be configured prior to enabling the TWI slave through the ENABLE register. Similarly, changing these settings must be performed while the TWI slave is disabled. Failing to do so may result in unpredictable behaviour.

6.23.1 EasyDMA

The TWIS implements EasyDMA for accessing RAM without CPU involvement.

The TWIS peripheral implements the following EasyDMA channels:

Channel	Туре	Register Cluster
TXD	READER	TXD
RXD	WRITER	RXD

Table 98: TWIS EasyDMA Channels

For detailed information regarding the use of EasyDMA, see EasyDMA on page 39.

The STOPPED event indicates that EasyDMA has finished accessing the buffer in RAM.

6.23.2 TWI slave responding to a read command

Before the TWI slave can respond to a read command the TWI slave must be configured correctly and enabled via the ENABLE register. When enabled the TWI slave will be in its IDLE state where it will consume $I_{\rm IDLE}$.

A read command is started when the TWI master generates a start condition on the TWI bus, followed by clocking out the address and the READ/WRITE bit set to 1 (WRITE=0, READ=1). The READ/WRITE bit is followed by an ACK/NACK bit (ACK=0 or NACK=1) response from the TWI slave.

The TWI slave is able to listen for up to two addresses at the same time. Which addresses to listen for is configured in the ADDRESS registers and the CONFIG register.

The TWI slave will only acknowledge (ACK) the read command if the address presented by the master matches one of the addresses the slave is configured to listen for. The TWI slave will generate a READ event when it acknowledges the read command.

The TWI slave is only able to detect a read command from the IDLE state.

The TWI slave will set an internal 'TX prepared' flag when the PREPARETX task is triggered.

When the read command is received the TWI slave will enter the TX state if the internal 'TX prepared' flag is set.

If the internal 'TX prepared' flag is not set when the read command is received, the TWI slave will stretch the master's clock until the PREPARETX task is triggered and the internal 'TX prepared' flag is set.

The TWI slave will generate the TXSTARTED event and clear the 'TX prepared' flag ('unprepare TX') when it enters the TX state. In this state the TWI slave will send the data bytes found in the transmit buffer to the master using the master's clock. The TWI slave will consume I_{TX} in this mode.

The TWI slave will go back to the IDLE state if the TWI slave receives a restart command when it is in the TX state.

The TWI slave is stopped when it receives the stop condition from the TWI master. A STOPPED event will be generated when the transaction has stopped. The TWI slave will clear the 'TX prepared' flag ('unprepare TX') and go back to the IDLE state when it has stopped.

The transmit buffer is located in RAM at the address specified in the TXD.PTR register. The TWI slave will only be able to send TXD.MAXCNT bytes from the transmit buffer for each transaction. If the TWI master forces the slave to send more than TXD.MAXCNT bytes, the slave will send the byte specified in the ORC register to the master instead. If this happens, an ERROR event will be generated.

The EasyDMA configuration registers, see TXD.PTR etc., are latched when the TXSTARTED event is generated.

The TWI slave can be forced to stop by triggering the STOP task. A STOPPED event will be generated when the TWI slave has stopped. The TWI slave will clear the 'TX prepared' flag and go back to the IDLE state when it has stopped, see also Terminating an ongoing TWI transaction on page 332.

Each byte sent from the slave will be followed by an ACK/NACK bit sent from the master. The TWI master will generate a NACK following the last byte that it wants to receive to tell the slave to release the bus so that the TWI master can generate the stop condition. The TXD.AMOUNT register can be queried after a transaction to see how many bytes were sent.

A typical TWI slave read command response is illustrated in The TWI slave responding to a read command on page 330. Occurrence 2 in the figure illustrates clock stretching performed by the TWI slave following a SUSPEND task.

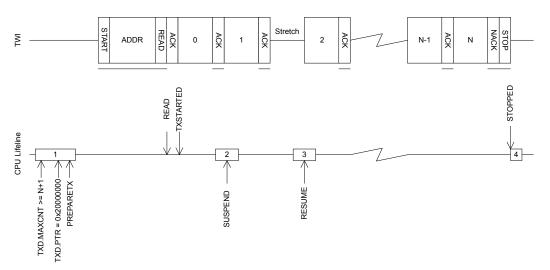


Figure 123: The TWI slave responding to a read command

6.23.3 TWI slave responding to a write command

Before the TWI slave can respond to a write command the TWI slave must be configured correctly and enabled via the ENABLE register. When enabled the TWI slave will be in its IDLE state where it will consume $I_{\rm IDLE}$.

A write command is started when the TWI master generates a start condition on the TWI bus, followed by clocking out the address and the READ/WRITE bit set to 0 (WRITE=0, READ=1). The READ/WRITE bit is followed by an ACK/NACK bit (ACK=0 or NACK=1) response from the slave.

The TWI slave is able to listen for up to two addresses at the same time. Which addresses to listen for is configured in the ADDRESS registers and the CONFIG register.

The TWI slave will only acknowledge (ACK) the write command if the address presented by the master matches one of the addresses the slave is configured to listen for. The TWI slave will generate a WRITE event if it acknowledges the write command.

The TWI slave is only able to detect a write command from the IDLE state.

The TWI slave will set an internal 'RX prepared' flag when the PREPARERX task is triggered.

When the write command is received the TWI slave will enter the RX state if the internal 'RX prepared' flag is set.

If the internal 'RX prepared' flag is not set when the write command is received, the TWI slave will stretch the master's clock until the PREPARERX task is triggered and the internal 'RX prepared' flag is set.

The TWI slave will generate the RXSTARTED event and clear the internal 'RX prepared' flag ('unprepare RX') when it enters the RX state. In this state the TWI slave will be able to receive the bytes sent by the TWI master. The TWI slave will consume I_{RX} in this mode.

The TWI slave will go back to the IDLE state if the TWI slave receives a restart command when it is in the RX state.

The TWI slave is stopped when it receives the stop condition from the TWI master. A STOPPED event will be generated when the transaction has stopped. The TWI slave will clear the internal 'RX prepared' flag ('unprepare RX') and go back to the IDLE state when it has stopped.

The receive buffer is located in RAM at the address specified in the TXD.PTR register. The TWI slave will only be able to receive as many bytes as specified in the RXD.MAXCNT register. If the TWI master tries to send more bytes to the slave than the slave is able to receive, these bytes will be discarded and the bytes will be NACKed by the slave. If this happens, an ERROR event will be generated.

The EasyDMA configuration registers, see RXD.PTR etc., are latched when the RXSTARTED event is generated.

The TWI slave can be forced to stop by triggering the STOP task. A STOPPED event will be generated when the TWI slave has stopped. The TWI slave will clear the internal 'RX prepared' flag and go back to the IDLE state when it has stopped, see also Terminating an ongoing TWI transaction on page 332.

The TWI slave will generate an ACK after every byte received from the master. The RXD.AMOUNT register can be queried after a transaction to see how many bytes were received.

A typical TWI slave write command response is illustrated in The TWI slave responding to a write command on page 331. Occurrence 2 in the figure illustrates clock stretching performed by the TWI slave following a SUSPEND task.

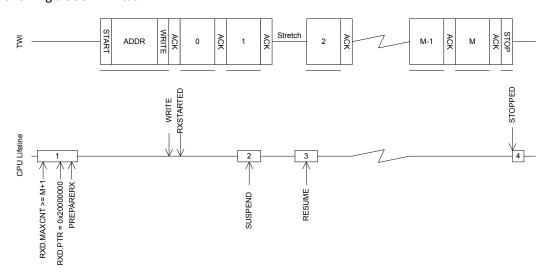


Figure 124: The TWI slave responding to a write command

6.23.4 Master repeated start sequence

An example of a repeated start sequence is one in which the TWI master writes two bytes to the slave followed by reading four bytes from the slave.

This is illustrated in A repeated start sequence, where the TWI master writes two bytes followed by reading four bytes from the slave on page 332.

NORDIC

It is here assumed that the receiver does not know in advance what the master wants to read, and that this information is provided in the first two bytes received in the write part of the repeated start sequence. To guarantee that the CPU is able to process the received data before the TWI slave starts to reply to the read command, the SUSPEND task is triggered via a shortcut from the READ event generated when the read command is received. When the CPU has processed the incoming data and prepared the correct data response, the CPU will resume the transaction by triggering the RESUME task.

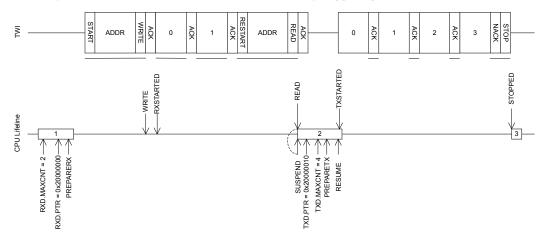


Figure 125: A repeated start sequence, where the TWI master writes two bytes followed by reading four bytes from the slave

6.23.5 Terminating an ongoing TWI transaction

In some situations, e.g. if the external TWI master is not responding correctly, it may be required to terminate an ongoing transaction.

This can be achieved by triggering the STOP task. In this situation a STOPPED event will be generated when the TWI has stopped independent of whether or not a STOP condition has been generated on the TWI bus. The TWI slave will release the bus when it has stopped and go back to its IDLE state.

6.23.6 Low power

When putting the system in low power and the peripheral is not needed, lowest possible power consumption is achieved by stopping, and then disabling the peripheral.

The STOP task may not be always needed (the peripheral might already be stopped), but if it is sent, software shall wait until the STOPPED event was received as a response before disabling the peripheral through the ENABLE register.

6.23.7 Slave mode pin configuration

The SCL and SDA signals associated with the TWI slave are mapped to physical pins according to the configuration specified in the PSEL.SCL and PSEL.SDA registers respectively.

The PSEL.SCL and PSEL.SDA registers and their configurations are only used as long as the TWI slave is enabled, and retained only as long as the device is in ON mode. When the peripheral is disabled, the pins will behave as regular GPIOs, and use the configuration in their respective OUT bit field and PIN_CNF[n] register. PSEL.SCL and PSEL.SDA must only be configured when the TWI slave is disabled.

To secure correct signal levels on the pins used by the TWI slave when the system is in OFF mode, and when the TWI slave is disabled, these pins must be configured in the GPIO peripheral as described in GPIO configuration before enabling peripheral on page 333.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in unpredictable behavior.

TWI slave signal	TWI slave pin	Direction	Output value	Drive strength
SCL	As specified in PSEL.SCL	Input	Not applicable	SOD1
SDA	As specified in PSEL.SDA	Input	Not applicable	SOD1

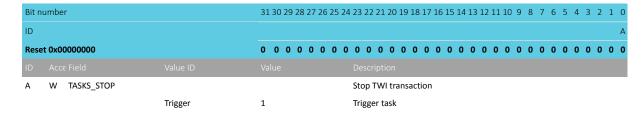
Table 99: GPIO configuration before enabling peripheral

6.23.8 Registers

Base address	Peripheral	Instance	Description	Configuration
0x40003000	TWIS	TWIS0	Two-wire interface slave 0	
0x40004000	TWIS	TWIS1	Two-wire interface slave 1	

Table 100: Instances

Register	Offset	Description
TASKS_STOP	0x014	Stop TWI transaction
TASKS_SUSPEND	0x01C	Suspend TWI transaction
TASKS_RESUME	0x020	Resume TWI transaction
TASKS_PREPARERX	0x030	Prepare the TWI slave to respond to a write command
TASKS_PREPARETX	0x034	Prepare the TWI slave to respond to a read command
EVENTS_STOPPED	0x104	TWI stopped
EVENTS_ERROR	0x124	TWI error
EVENTS_RXSTARTED	0x14C	Receive sequence started
EVENTS_TXSTARTED	0x150	Transmit sequence started
EVENTS_WRITE	0x164	Write command received
EVENTS_READ	0x168	Read command received
SHORTS	0x200	Shortcuts between local events and tasks
INTEN	0x300	Enable or disable interrupt
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt
ERRORSRC	0x4D0	Error source
MATCH	0x4D4	Status register indicating which address had a match
ENABLE	0x500	Enable TWIS
PSEL.SCL	0x508	Pin select for SCL signal
PSEL.SDA	0x50C	Pin select for SDA signal
RXD.PTR	0x534	RXD Data pointer
RXD.MAXCNT	0x538	Maximum number of bytes in RXD buffer
RXD.AMOUNT	0x53C	Number of bytes transferred in the last RXD transaction
RXD.LIST	0x540	EasyDMA list type
TXD.PTR	0x544	TXD Data pointer
TXD.MAXCNT	0x548	Maximum number of bytes in TXD buffer
TXD.AMOUNT	0x54C	Number of bytes transferred in the last TXD transaction
TXD.LIST	0x550	EasyDMA list type
ADDRESS[0]	0x588	TWI slave address 0
ADDRESS[1]	0x58C	TWI slave address 1
CONFIG	0x594	Configuration register for the address match mechanism
ORC	0x5C0	Over-read character. Character sent out in case of an over-read of the transmit buffer.


Table 101: Register overview

6.23.8.1 TASKS_STOP

Address offset: 0x014

Stop TWI transaction

6.23.8.2 TASKS_SUSPEND

Address offset: 0x01C
Suspend TWI transaction

Bit number			31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 (
ID															
Reset 0x00000000 0 0 0 0				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											
ID															
Α	W TASKS_SUSPEND			Suspend TWI transaction											
		Trigger	1	Trigger task											

6.23.8.3 TASKS_RESUME

Address offset: 0x020
Resume TWI transaction

Bit n	umber		31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
A W TASKS_RESUME				Resume TWI transaction
		Trigger	1	Trigger task

6.23.8.4 TASKS_PREPARERX

Address offset: 0x030

Prepare the TWI slave to respond to a write command

Bit n	umber		⁴ 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0												
ID				А											
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											
ID				Description											
Α	W TASKS_PREPARERX			Prepare the TWI slave to respond to a write command											
		Trigger 1		Trigger task											

6.23.8.5 TASKS_PREPARETX

Address offset: 0x034

Prepare the TWI slave to respond to a read command

Bit n	uml	ber		31 30 29 28 27 26 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0										
ID					А										
Rese	et Ox	x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
ID					Description										
Α	W	V TASKS_PREPARETX			Prepare the TWI slave to respond to a read command										
			Trigger	1	Trigger task										

6.23.8.6 EVENTS_STOPPED

Address offset: 0x104

TWI stopped

Bit nu	mber		31	30	29 :	28 2	7 2	6 25	5 24	4 23	3 22	2 2 1	. 20	19	18	17	16	15	14	13	12	11 :	10 9	9 8	3 7	7 (6 5	5 4	3	2	1 0
ID																															А
Reset	0x00000000		0	0	0	0 (0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 (0 () (0 (0	0	0	0 0
ID																															
Α	RW EVENTS_STOPPED									T۱	NI s	sto	ope	d																	
		NotGenerated	0							E٧	en	t no	ot ge	ene	rate	ed															
		Generated	1							E٧	en	t ge	ner	ate	d																

6.23.8.7 EVENTS_ERROR

Address offset: 0x124

TWI error

Bit n	umber		313	30 29	9 28	3 27	26 2	5 2	4 23	3 22	21	20 :	19 1	8 17	16	15	14 :	13 1	2 11	10	9	8	7 6	5 5	4	3	2	1 0
ID																												Α
Rese	et 0x00000000		0	0 0	0	0	0 (0	0	0	0	0	0 0	0	0	0	0	0 (0	0	0	0 (0 (0	0	0	0	0 0
ID																												
Α	RW EVENTS_ERROR								T	WI e	erroi																	
		NotGenerated	0						E۱	vent	not	ge	nera	ted														
		Generated	1						E۱	vent	ger	era	ated															

6.23.8.8 EVENTS_RXSTARTED

Address offset: 0x14C Receive sequence started

Bit number	31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
ID		
Reset 0x00000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field		

Α	RW EVENTS_RXSTARTED			Receive sequence starte
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.23.8.9 EVENTS_TXSTARTED

Address offset: 0x150

4463_014 v0.7

Transmit sequence started

Bit n	umber		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW EVENTS_TXSTARTED			Transmit sequence started
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.23.8.10 EVENTS_WRITE

Address offset: 0x164
Write command received

Bit r	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW EVENTS_WRITE			Write command received
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.23.8.11 EVENTS_READ

Address offset: 0x168
Read command received

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW EVENTS_READ			Read command received
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.23.8.12 SHORTS

Address offset: 0x200

Shortcuts between local events and tasks

Bit r	number		31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				B A
Res	et 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW WRITE_SUSPEND			Shortcut between event WRITE and task SUSPEND
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut
В	RW READ_SUSPEND			Shortcut between event READ and task SUSPEND
		Disabled	0	Disable shortcut
		Enabled	1	Enable shortcut

6.23.8.13 INTEN

Address offset: 0x300

Enable or disable interrupt

Bit r	number		31	30 2	9 2	8 27	7 26	25	5 24	23 2	22 2	1 20	0 1	9 18	3 17	16	15	14	13 1	2 1	1 10	9	8	7	6	5	4	3 2	1	. 0
ID							Н	G				F	- E									В							Α	
Rese	et 0x0000000		0	0 () (0 0	0	0	0	0	0 (0 0) (0 0	0	0	0	0	0 (0 (0 0	0	0	0	0	0	0 (0 0	0	0
ID																														
Α	RW STOPPED									Ena	ble	or c	disa	able	int	errı	ıpt	for	eve	nt S	тог	PPE	D							
		Disabled	0							Disa	ble																			
		Enabled	1							Ena	ble																			
В	RW ERROR									Ena	ble	or c	disa	able	int	errı	ıpt	for	eve	nt E	RRO	OR								
		Disabled	0							Disa	ble																			
		Enabled	1							Ena	ble																			
E	RW RXSTARTED									Ena	ble	or c	disa	able	int	errı	ıpt	for	eve	nt F	RXST	AR	ΓED							
		Disabled	0							Disa	able																			
		Enabled	1							Ena	ble																			
F	RW TXSTARTED									Ena	ble	or c	disa	able	int	errı	ıpt	for	eve	nt T	XST	AR1	ΓED							
		Disabled	0							Disa	able																			
		Enabled	1							Ena	ble																			
G	RW WRITE									Ena	ble	or c	disa	able	int	errı	ıpt	for	eve	nt \	VRI.	TE								
		Disabled	0							Disa	able																			
		Enabled	1							Ena	ble																			
Н	RW READ									Ena	ble	or c	disa	able	int	errı	upt	for	eve	nt F	REAL	0								
		Disabled	0							Disa	able																			
		Enabled	1							Ena	ble																			

6.23.8.14 INTENSET

Address offset: 0x304

Enable interrupt

Bit n	umber		313	30 29	28 2	27 2	6 25	5 24	23	3 22 :	21 2	20 1	9 18	17	16	15 1	.4 1	3 1	2 1	1 10	9	8	7	6 5	5 4	3	2	1 0
ID						F	l G					F E									В							Α
Rese	t 0x00000000		0	0 0	0	0 (0	0	0	0	0	0 0	0	0	0	0	0	0 0) (0	0	0	0	0 (0	0	0	0 0
ID																												
Α	RW STOPPED								Wı	rite	'1' t	o er	nable	e int	err	upt	for	eve	ent	STO	PPE	D						
		Set	1						En	nable	Э																	
		Disabled	0						Re	ead:	Disa	able	d															
		Enabled	1						Re	ead:	Ena	ble	t															
В	RW ERROR								Wı	rite	'1' t	o er	nable	e int	err	upt	for	eve	ent	ERR	OR							
		Set	1						En	nable	9																	
		Disabled	0						Re	ead:	Disa	able	d															
		Enabled	1						Re	ead:	Ena	ble	t															
Е	RW RXSTARTED								Wı	rite	'1' t	o er	nable	e int	err	upt	for	eve	ent	RXS	TAR	TED						
		Set	1						En	nable	е																	
		Disabled	0						Re	ead:	Disa	able	d															
		Enabled	1						Re	ead:	Ena	ble	t															
F	RW TXSTARTED								Wı	rite	'1' t	o er	nable	e int	err	upt	for	eve	ent	TXS	ΓAR	TED						
		Set	1						En	nable	e																	
		Disabled	0						Re	ead:	Disa	able	d															
		Enabled	1						Re	ead:	Ena	ble	d															

Bit number		31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 (
ID		H	HG FE B A
Reset 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
G RW WRITE			Write '1' to enable interrupt for event WRITE
	Set	1	Enable
	Disabled	0	Read: Disabled
	Enabled	1	Read: Enabled
H RW READ			Write '1' to enable interrupt for event READ
	Set	1	Enable
	Disabled	0	Read: Disabled
	Enabled	1	Read: Enabled

6.23.8.15 INTENCLR

Address offset: 0x308

Disable interrupt

Bit n	umber		31 3	0 29	28 2	27 26	6 25	5 24	23	3 22 2	1 2	20 1	9 1	8 1	7 16	5 1!	5 14	1 13	12	11	10	9	8 7	7	6 5	4	3	2	1 0
ID						Н	l G	i				F E										В							Α
Rese	et 0x00000000		0 0	0	0	0 0	0	0	0	0 (0 (0 () (0	0	0	0	0	0	0	0	0	0 (0	0 (0	0	0	0 0
ID																													
Α	RW STOPPED								W	/rite ':	1' t	o di	isat	le i	nte	rru	pt 1	for	eve	nt S	TOF	PPE	D						
		Clear	1						Di	isable																			
		Disabled	0						Re	ead: D	Disa	able	d																
		Enabled	1						Re	ead: E	na	ble	d																
В	RW ERROR								W	/rite ':	1' t	o di	isak	le i	nte	rru	pt 1	for	eve	nt E	RRC	OR							
		Clear	1						Di	isable																			
		Disabled	0						Re	ead: C	Disa	able	d																
		Enabled	1						Re	ead: E	na	ble	d																
E	RW RXSTARTED								W	/rite ':	1' t	o di	isat	le i	nte	rru	pt 1	for	eve	nt R	XST	TAR	TED						
		Clear	1						Di	isable																			
		Disabled	0						Re	ead: D	Disa	ble	d																
		Enabled	1						Re	ead: E	na	ble	d																
F	RW TXSTARTED								W	/rite ':	1' t	o di	isak	le i	nte	rru	pt 1	for	eve	nt T	XST	AR	TED						
		Clear	1						Di	isable																			
		Disabled	0						Re	ead: C	Disa	ble	d																
		Enabled	1						Re	ead: E	na	ble	d																
G	RW WRITE								W	/rite ':	1' t	o di	isak	le i	nte	rru	pt 1	for	eve	nt V	VRI	TE							
		Clear	1						Di	isable																			
		Disabled	0						Re	ead: D	Disa	able	d																
		Enabled	1						Re	ead: E	na	ble	d																
Н	RW READ								W	/rite ':	1' t	o di	isak	le i	nte	rru	pt 1	for	eve	nt R	REAL	D							
		Clear	1						Di	isable																			
		Disabled	0						Re	ead: C	Disa	able	d																
		Enabled	1						Re	ead: E	na	ble	d																

6.23.8.16 ERRORSRC

Address offset: 0x4D0

Error source

Bit number		31 30 29 28 27 26 25 24	⁴ 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			C B A
Reset 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field V			Description
A RW OVERFLOW			RX buffer overflow detected, and prevented
N	lotDetected	0	Error did not occur
D	etected	1	Error occurred
B RW DNACK			NACK sent after receiving a data byte
N	lotReceived	0	Error did not occur
R	eceived	1	Error occurred
C RW OVERREAD			TX buffer over-read detected, and prevented
N	lotDetected	0	Error did not occur
D	etected	1	Error occurred

6.23.8.17 MATCH

Address offset: 0x4D4

Status register indicating which address had a match

Bit number	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		A
Reset 0x00000000	0 0 0 0 0 0 0	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$
ID Acce Field		
A R MATCH	[01]	Which of the addresses in {ADDRESS} matched the incoming
		address

6.23.8.18 ENABLE

Address offset: 0x500

Enable TWIS

Bit number	31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		АААА
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		Description
A RW ENABLE		Enable or disable TWIS
Disabled	0	Disable TWIS
Enabled	9	Enable TWIS

6.23.8.19 PSEL.SCL

Address offset: 0x508

Pin select for SCL signal

Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	ААААА
Rese	t OxFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				Description
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect

6.23.8.20 PSEL.SDA

Address offset: 0x50C Pin select for SDA signal

Bit no	umber		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	АААА
Rese	t OxFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				Description
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect

6.23.8.21 RXD.PTR

Address offset: 0x534

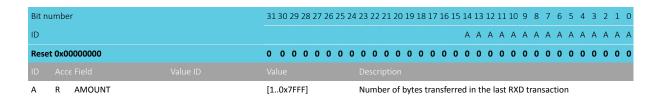
RXD Data pointer

ID																														
Rese	0x00000000	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	0	0	0 0	0	0
ID		Α	Α	Α	Α	A .	Α.	Α	Α	Δ.	A A	Α Α	A	Α	Α	Α	Α	Α,	4 Α	Α	Α	Α	Α	Α	Α	Α	A	Α /	A	Α
Bit nu	ımber	31	30	29	28 2	27 2	26 2	25 2	24 2	3 2	22 2	1 20	0 19	18	17	16	15 1	L4 1	3 12	2 11	10	9	8	7	6	5	4	3 2	1	0

Note: See the memory chapter for details about which memories are available for EasyDMA.

6.23.8.22 RXD.MAXCNT

Address offset: 0x538


Maximum number of bytes in RXD buffer

Bit r	umber	31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			A A A A A A A A A A A A A A A
Rese	t 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID			
Α	RW MAXCNT	[10x7FFF]	Maximum number of bytes in RXD buffer

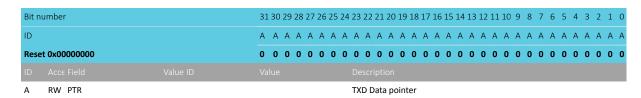
6.23.8.23 RXD.AMOUNT

Address offset: 0x53C

Number of bytes transferred in the last RXD transaction

6.23.8.24 RXD.LIST

Address offset: 0x540


EasyDMA list type

Bit nu	umber		313	30 2	9 28	27	26 2	5 2	24 2	3 2	2 2	1 2	0 1	9 1	8 1	7 1	6 1	5 1	4 13	3 12	11	10	9	8	7	6	5	4	3	2 :	1 0
ID																														1	A A
Rese	t 0x00000000		0	0 0	0	0	0 ()	0 () (0	0 () (0 0) () () () (0	0	0	0	0	0	0	0	0	0	0	0 (0 0
Α	RW LIST								L	ist	typ	e																			
		Disabled	0						C	isa	ble	Ea	syE	MA	A lis	t															
		ArrayList	1						L	lse	arı	ay l	ist																		

6.23.8.25 TXD.PTR

Address offset: 0x544

TXD Data pointer

Note: See the memory chapter for details about which memories are available for EasyDMA.

6.23.8.26 TXD.MAXCNT

Address offset: 0x548

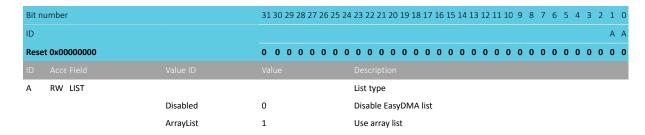
Maximum number of bytes in TXD buffer

Α	RW MAXCNT	[10x7FFF]	Maximum number of bytes in TXD buffer
ID			
Res	et 0x00000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID			A A A A A A A A A A A A A A A
Bit r	umber	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.23.8.27 TXD.AMOUNT

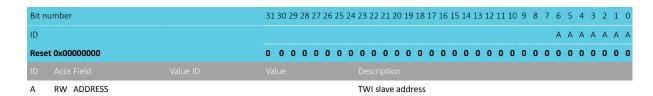
Address offset: 0x54C

Number of bytes transferred in the last TXD transaction


Bit n	umbe	r	31 30 2	9 28 2	7 26	25 2	4 23	22 2	1 20	19	18 1	17 16	15	14 :	3 12	2 11	10	9	8 7	6	5	4	3 2	1	0
ID														Α	А А	Α	Α	A	А Д	Α	Α	Α	А А	Α	Α
Rese	t 0x0	0000000	0 0 0	0 0	0 0	0 0	0	0 (0 0	0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0	0
ID																									
Α	R	AMOUNT	[10x7	FFF]			Nu	ımbe	r of	byte	es tr	ansfe	erre	d in	the	last	TXI) tra	nsa	ctio	n				_

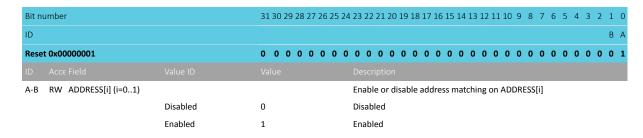
6.23.8.28 TXD.LIST

Address offset: 0x550


EasyDMA list type

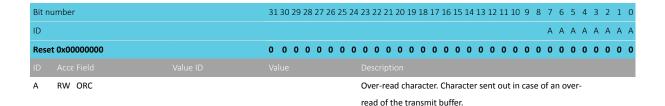
6.23.8.29 ADDRESS[n] (n=0..1)

Address offset: $0x588 + (n \times 0x4)$


TWI slave address n

6.23.8.30 CONFIG

Address offset: 0x594


Configuration register for the address match mechanism

6.23.8.31 ORC

Address offset: 0x5C0

Over-read character. Character sent out in case of an over-read of the transmit buffer.

6.23.9 Electrical specification

6.23.9.1 TWIS slave timing specifications

Description	Min.	Тур.	Max.	Units
Bit rates for TWIS ³³	100		400	kbps
Time from PREPARERX/PREPARETX task to ready to receive/		1.5		μs
transmit				
Data setup time before positive edge on SCL – all modes	300			ns
Data hold time after negative edge on SCL – all modes	500			ns
TWI slave hold time from for START condition (SDA low to	5200			ns
SCL low), 100 kbps				
TWI slave hold time from for START condition (SDA low to	1300			ns
SCL low), 400 kbps				
TWI slave setup time from SCL high to STOP condition, 100	5200			ns
kbps				
TWI slave setup time from SCL high to STOP condition, 400	1300			ns
kbps				
TWI slave bus free time between STOP and START		4700		ns
conditions, 100 kbps				
TWI slave bus free time between STOP and START		1300		ns
conditions, 400 kbps				
	Bit rates for TWIS ³³ Time from PREPARERX/PREPARETX task to ready to receive/ transmit Data setup time before positive edge on SCL – all modes Data hold time after negative edge on SCL – all modes TWI slave hold time from for START condition (SDA low to SCL low), 100 kbps TWI slave hold time from for START condition (SDA low to SCL low), 400 kbps TWI slave setup time from SCL high to STOP condition, 100 kbps TWI slave setup time from SCL high to STOP condition, 400 kbps TWI slave bus free time between STOP and START conditions, 100 kbps TWI slave bus free time between STOP and START	Bit rates for TWIS ³³ Time from PREPARERX/PREPARETX task to ready to receive/ transmit Data setup time before positive edge on SCL – all modes Data hold time after negative edge on SCL – all modes SCL low), 100 kbps TWI slave hold time from for START condition (SDA low to 5200 SCL low), 100 kbps TWI slave hold time from for START condition (SDA low to 1300 SCL low), 400 kbps TWI slave setup time from SCL high to STOP condition, 100 5200 kbps TWI slave setup time from SCL high to STOP condition, 400 1300 kbps TWI slave bus free time between STOP and START conditions, 100 kbps TWI slave bus free time between STOP and START	Bit rates for TWIS ³³ Time from PREPARERX/PREPARETX task to ready to receive/ transmit Data setup time before positive edge on SCL – all modes Data hold time after negative edge on SCL – all modes TWI slave hold time from for START condition (SDA low to 5200 SCL low), 100 kbps TWI slave hold time from for START condition (SDA low to 1300 SCL low), 400 kbps TWI slave setup time from SCL high to STOP condition, 100 5200 kbps TWI slave setup time from SCL high to STOP condition, 400 1300 kbps TWI slave bus free time between STOP and START 74700 conditions, 100 kbps TWI slave bus free time between STOP and START 1300 states are time between STOP and START 1300 states	Bit rates for TWIS ³³ 100 400 Time from PREPARERX/PREPARETX task to ready to receive/ transmit Data setup time before positive edge on SCL – all modes Data hold time after negative edge on SCL – all modes TWI slave hold time from for START condition (SDA low to 5200 SCL low), 100 kbps TWI slave hold time from for START condition (SDA low to 1300 SCL low), 400 kbps TWI slave setup time from SCL high to STOP condition, 100 kbps TWI slave setup time from SCL high to STOP condition, 400 kbps TWI slave bus free time between STOP and START TWI slave bus free time between STOP and START TWI slave bus free time between STOP and START TWI slave bus free time between STOP and START TWI slave bus free time between STOP and START

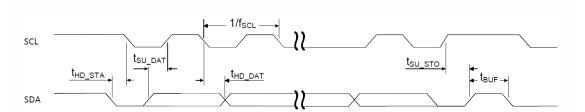


Figure 126: TWIS timing diagram, 1 byte transaction

6.24 UART — Universal asynchronous receiver/transmitter

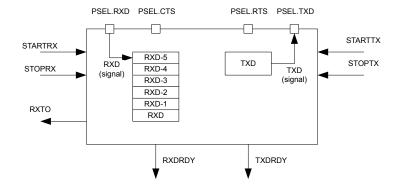


Figure 127: UART configuration

High bit rates or stronger pull-ups may require GPIOs to be set as High Drive, see GPIO chapter for more details.

6.24.1 Functional description

Listed here are the main features of UART.

The UART implements support for the following features:

- Full-duplex operation
- Automatic flow control
- Parity checking and generation for the 9th data bit

As illustrated in UART configuration on page 343, the UART uses the TXD and RXD registers directly to transmit and receive data. The UART uses one stop bit.

Note: External crystal oscillator must be enabled to obtain sufficient clock accuracy for stable communication. See CLOCK — Clock control on page 72 for more information.

6.24.2 Pin configuration

The different signals RXD, CTS (Clear To Send, active low), RTS (Request To Send, active low), and TXD associated with the UART are mapped to physical pins according to the configuration specified in the PSEL.RXD, PSEL.CTS, PSEL.RTS, and PSEL.TXD registers respectively.

If the CONNECT field of a PSEL.xxx register is set to Disconnected, the associated UART signal will not be connected to any physical pin. The PSEL.RXD, PSEL.CTS, PSEL.RTS, and PSEL.TXD registers and their configurations are only used as long as the UART is enabled, and retained only for the duration the device is in ON mode. PSEL.RXD, PSEL.CTS, PSEL.RTS and PSEL.TXD must only be configured when the UART is disabled.

To secure correct signal levels on the pins by the UART when the system is in OFF mode, the pins must be configured in the GPIO peripheral as described in Pin configuration on page 344.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in unpredictable behavior.

UART pin	Direction	Output value
RXD	Input	Not applicable
CTS	Input	Not applicable
RTS	Output	1
TXD	Output	1

Table 102: GPIO configuration

6.24.3 Shared resources

The UART shares registers and other resources with other peripherals that have the same ID as the UART.

Therefore, you must disable all peripherals that have the same ID as the UART before the UART can be configured and used. Disabling a peripheral that has the same ID as the UART will not reset any of the registers that are shared with the UART. It is therefore important to configure all relevant UART registers explicitly to ensure that it operates correctly.

See the Instantiation table in Instantiation on page 20 for details on peripherals and their IDs.

6.24.4 Transmission

A UART transmission sequence is started by triggering the STARTTX task.

Bytes are transmitted by writing to the TXD register. When a byte has been successfully transmitted the UART will generate a TXDRDY event after which a new byte can be written to the TXD register. A UART transmission sequence is stopped immediately by triggering the STOPTX task.

If flow control is enabled a transmission will be automatically suspended when CTS is deactivated and resumed when CTS is activated again, as illustrated in UART transmission on page 345. A byte that is in transmission when CTS is deactivated will be fully transmitted before the transmission is suspended. For more information, see Suspending the UART on page 346.

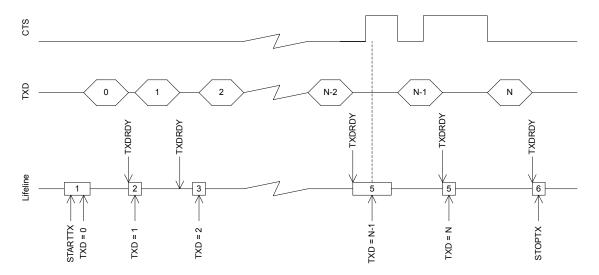


Figure 128: UART transmission

6.24.5 Reception

A UART reception sequence is started by triggering the STARTRX task.

The UART receiver chain implements a FIFO capable of storing six incoming RXD bytes before data is overwritten. Bytes are extracted from this FIFO by reading the RXD register. When a byte is extracted from the FIFO a new byte pending in the FIFO will be moved to the RXD register. The UART will generate an RXDRDY event every time a new byte is moved to the RXD register.

When flow control is enabled, the UART will deactivate the RTS signal when there is only space for four more bytes in the receiver FIFO. The counterpart transmitter is therefore able to send up to four bytes after the RTS signal is deactivated before data is being overwritten. To prevent overwriting data in the FIFO, the counterpart UART transmitter must therefore make sure to stop transmitting data within four bytes after the RTS line is deactivated.

The RTS signal will first be activated again when the FIFO has been emptied, that is, when all bytes in the FIFO have been read by the CPU, see UART reception on page 346.

The RTS signal will also be deactivated when the receiver is stopped through the STOPRX task as illustrated in UART reception on page 346. The UART is able to receive four to five additional bytes if they are sent in succession immediately after the RTS signal has been deactivated. This is possible because the UART is, even after the STOPRX task is triggered, able to receive bytes for an extended period of time dependent on the configured baud rate. The UART will generate a receiver timeout event (RXTO) when this period has elapsed.

To prevent loss of incoming data the RXD register must only be read one time following every RXDRDY event.

To secure that the CPU can detect all incoming RXDRDY events through the RXDRDY event register, the RXDRDY event register must be cleared before the RXD register is read. The reason for this is that the UART is allowed to write a new byte to the RXD register, and therefore can also generate a new event, immediately after the RXD register is read (emptied) by the CPU.

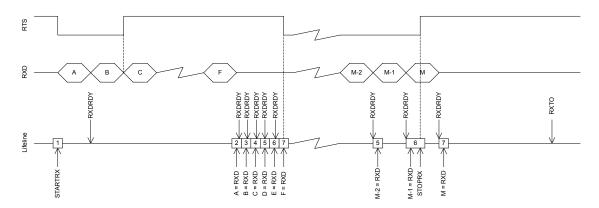


Figure 129: UART reception

As indicated in occurrence 2 in the figure, the RXDRDY event associated with byte B is generated first after byte A has been extracted from RXD.

6.24.6 Suspending the UART

The UART can be suspended by triggering the SUSPEND task.

SUSPEND will affect both the UART receiver and the UART transmitter, i.e. the transmitter will stop transmitting and the receiver will stop receiving. UART transmission and reception can be resumed, after being suspended, by triggering STARTTX and STARTRX respectively.

Following a SUSPEND task, an ongoing TXD byte transmission will be completed before the UART is suspended.

When the SUSPEND task is triggered, the UART receiver will behave in the same way as it does when the STOPRX task is triggered.

6.24.7 Frror conditions

An ERROR event, in the form of a framing error, will be generated if a valid stop bit is not detected in a frame. Another ERROR event, in the form of a break condition, will be generated if the RXD line is held active low for longer than the length of a data frame. Effectively, a framing error is always generated before a break condition occurs.

6.24.8 Using the UART without flow control

If flow control is not enabled, the interface will behave as if the CTS and RTS lines are kept active all the time.

6.24.9 Parity and stop bit configuration

Automatic even parity generation for both transmission and reception can be configured using the register CONFIG on page 355. If odd parity is desired, it can be configured using the register CONFIG on page 355. See the register description for details.

The amount of stop bits can also be configurated through the register CONFIG on page 355.

6.24.10 Registers

Base address	Peripheral	Instance	Description	Configuration	
0x40002000	UART	UART0	Universal asynchronous receiver/		Deprecated
			transmitter		

Table 103: Instances

Register	Offset	Description
TASKS_STARTRX	0x000	Start UART receiver
TASKS_STOPRX	0x004	Stop UART receiver
TASKS_STARTTX	0x008	Start UART transmitter
TASKS_STOPTX	0x00C	Stop UART transmitter
TASKS_SUSPEND	0x01C	Suspend UART
EVENTS_CTS	0x100	CTS is activated (set low). Clear To Send.
EVENTS_NCTS	0x104	CTS is deactivated (set high). Not Clear To Send.
EVENTS_RXDRDY	0x108	Data received in RXD
EVENTS_TXDRDY	0x11C	Data sent from TXD
EVENTS_ERROR	0x124	Error detected
EVENTS_RXTO	0x144	Receiver timeout
SHORTS	0x200	Shortcuts between local events and tasks
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt
ERRORSRC	0x480	Error source
ENABLE	0x500	Enable UART
PSEL.RTS	0x508	Pin select for RTS
PSEL.TXD	0x50C	Pin select for TXD
PSEL.CTS	0x510	Pin select for CTS
PSEL.RXD	0x514	Pin select for RXD
RXD	0x518	RXD register
TXD	0x51C	TXD register
BAUDRATE	0x524	Baud rate. Accuracy depends on the HFCLK source selected.
CONFIG	0x56C	Configuration of parity and hardware flow control

Table 104: Register overview

6.24.10.1 TASKS_STARTRX

Address offset: 0x000 Start UART receiver

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				,
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	W TASKS_STARTRX			Start UART receiver
		Trigger	1	Trigger task

6.24.10.2 TASKS_STOPRX

Address offset: 0x004 Stop UART receiver

Bit no	umber		31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	t 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	W TASKS_STOPRX			Stop UART receiver
		Trigger	1	Trigger task

6.24.10.3 TASKS_STARTTX

Address offset: 0x008 Start UART transmitter

Bit n	umb	er			31 30 29 28 27	26 25	5 24	23 2	2 2:	1 20	19	18	17	16	15	14	13	12 :	11 1	0 9	9 8	3 7	6	5	4	3	2	1 0
ID																												Α
Rese	t Ox	000	00000		0 0 0 0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 () () (0	0	0	0	0	0 0
ID																												
Α	W	T	ASKS_STARTTX					Start	:UA	ART 1	trai	nsm	itte	er														
				Trigger	1			Trigg	er	task																		

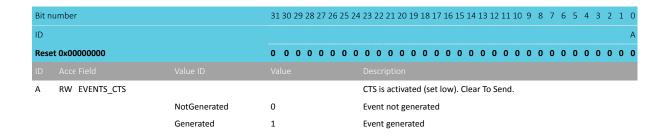
6.24.10.4 TASKS_STOPTX

Address offset: 0x00C Stop UART transmitter

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	W TASKS_STOPTX			Stop UART transmitter
		Trigger	1	Trigger task

6.24.10.5 TASKS_SUSPEND

Address offset: 0x01C


Suspend UART

Bit no	um	nbei	r		313	0 29	28	27 2	26 2	25 2	4 2	23 2	22	21	20	19	18	17	16	15	14	13	L2 1	1 10	9	8	7	6	5	4	3 2	2 1	1 0
ID																																	Α
Rese	t O	x00	000000		0	0 0	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0	0 () (0 0
ID												Des																					
Α	٧	V	TASKS_SUSPEND									Sus	pe	nd	UA	ART																	
				Trigger	1						-	Trig	ge	r ta	ask																		

6.24.10.6 EVENTS_CTS

Address offset: 0x100

CTS is activated (set low). Clear To Send.

6.24.10.7 EVENTS_NCTS

Address offset: 0x104

CTS is deactivated (set high). Not Clear To Send.

Bit number		31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			А
Reset 0x00000000		0 0 0 0 0 0 0	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$
ID Acce Field			Description
A RW EVENTS_NCTS			CTS is deactivated (set high). Not Clear To Send.
	NotGenerated	0	Event not generated
	Generated	1	Event generated

6.24.10.8 EVENTS_RXDRDY

Address offset: 0x108

Data received in RXD

Bit n	umber		31 30	0 29	28 2	27 26	6 25	24	23	22 2	21 2	0 19	9 18	17	16	15 1	.4 1	3 12	11	10 9	8	7	6	5	4	3	2	1 0
ID																												А
Rese	et 0x00000000		0 0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0	0	0 (0	0	0 (0	0	0	0	0	0	0	D O
ID																												
Α	RW EVENTS_RXDRDY								Dat	ta re	ecei	ved	in R	XD														
		NotGenerated	0						Eve	ent i	not	gen	erat	ed														
		Generated	1						Eve	ent (gene	erat	ed															

6.24.10.9 EVENTS_TXDRDY

Address offset: 0x11C

Data sent from TXD

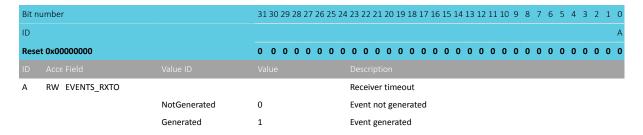
Bit n	umber		313	0 2	9 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12 1	11 1	.0 9	8 (3 7	6	5	4	3	2	1 0
ID																															Α
Rese	t 0x00000000		0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 (0	0	0	0	0	0	0	0 0
ID																															
Α	RW EVENTS_TXDRDY									Da	ta s	sen	t fr	om	TX	D															
		NotGenerated	0							Ev	ent	no	t ge	ene	rate	ed															
		Generated	1							Ev	ent	ge	ner	ate	d																

6.24.10.10 EVENTS_ERROR

Address offset: 0x124

Error detected

Bit number	31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		A
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		
A RW EVENTS_ERROR		Error detected
NotGenerated	0	Event not generated
Generated	1	Event generated



6.24.10.11 EVENTS_RXTO

Address offset: 0x144

Receiver timeout

6.24.10.12 SHORTS

Address offset: 0x200

Shortcuts between local events and tasks

Bit r	umber		31 30 29 28 27	26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					ВА
Rese	et 0x00000000		0 0 0 0 0	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					
Α	RW CTS_STARTRX				Shortcut between event CTS and task STARTRX
		Disabled	0		Disable shortcut
		Enabled	1		Enable shortcut
В	RW NCTS_STOPRX				Shortcut between event NCTS and task STOPRX
		Disabled	0		Disable shortcut
		Enabled	1		Enable shortcut

6.24.10.13 INTENSET

Address offset: 0x304

Enable interrupt

Bit number		31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			F E D C B A
Reset 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A RW CTS			Write '1' to enable interrupt for event CTS
	Set	1	Enable
	Disabled	0	Read: Disabled
	Enabled	1	Read: Enabled
B RW NCTS			Write '1' to enable interrupt for event NCTS
	Set	1	Enable
	Disabled	0	Read: Disabled
	Enabled	1	Read: Enabled
C RW RXDRDY			Write '1' to enable interrupt for event RXDRDY
	Set	1	Enable
	Disabled	0	Read: Disabled
	Enabled	1	Read: Enabled
D RW TXDRDY			Write '1' to enable interrupt for event TXDRDY
	Set	1	Enable

Bit number		31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			F E D C B A
Reset 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
	Disabled	0	Read: Disabled
	Enabled	1	Read: Enabled
E RW ERROR			Write '1' to enable interrupt for event ERROR
	Set	1	Enable
	Disabled	0	Read: Disabled
	Enabled	1	Read: Enabled
F RW RXTO			Write '1' to enable interrupt for event RXTO
	Set	1	Enable
	Disabled	0	Read: Disabled
	Enabled	1	Read: Enabled

6.24.10.14 INTENCLR

Address offset: 0x308

Disable interrupt

Reset > 00000000000000000000000000000000000	Bit number		31 30 29 28	27 26 2	5 24	23 22 :	21 2	20 19	9 18	3 17	16	15 1	L4 1	3 12	2 11	. 10	9	8	7	6 5	4	3	2 1	1 0
RW CTS	ID									F							E	[)				C E	3 A
A RW CTS	Reset 0x00000000		0 0 0 0	0 0 0	0 0	0 0	0	0 0	0	0	0	0	0 (0 0	0	0	0	0 (0 (0 0	0	0	0 () 0
Clear 1 Disable	ID Acce Field																							
B RW NCTS Clear Disabled Disab	A RW CTS					Write	'1' t	o dis	sab	le ir	iter	rupt	foi	eve	ent	CTS	_		_					
B RW NCTS Clear 1 Disable C RW RXDRDY Clear 1 Disable Clear 1 Disable Clear 1 Disable Enabled 1 Read: Enabled C RW RXDRDY Clear 1 Disable Disabled 0 Read: Disabled Clear 1 Disable Disabled 0 Read: Enabled Clear 1 Disable Disabled 0 Read: Disabled Read: Enabled Clear 1 Disable Enabled 1 Read: Enabled Clear 1 Disable Enabled 1 Read: Enabled Clear 1 Disable Enabled 1 Read: Enabled Clear 1 Disable Elabled 0 Read: Disable Clear 1 Disable Elabled 1 Read: Enabled Enabled 1		Clear	1			Disable	e																	
B RW NCTS Clear 1 Disable Disabled 0 Read: Disabled C RW RXDRDY Clear 1 Disabled Disabled 0 Read: Enabled C RW RXDRDY Clear 1 Disabled Disabled 0 Read: Enabled Clear 1 Disabled Disabled 0 Read: Disabled Read: Enabled Clear 1 Disabled Disabled 0 Read: Disabled Read: Enabled Clear 1 Disabled Disabled 0 Read: Enabled Clear 1 Disabled Disabled 0 Read: Disabled Read: Enabled Enabled 1 Read: Enabled		Disabled	0			Read:	Disa	ble	d															
C RW RXDRDY Clear 1 Disabled C RW TXDRDY Clear 1 Disabled C Rad: Enabled D Disabled 1 Read: Enabled D Disabled 0 Read: Disabled Enabled 1 Read: Enabled D Disabled 0 Read: Disabled Enabled 1 Read: Enabled E RW ERROR Read: Disabled Enabled 1 Read: Enabled Enabled 1 Read: Disabled Enabled 1 Read: Disabled Enabled 1 Read: Disabled Enabled 1 Read: Enabled Enabled 1 Read: Enabled Enabled 1 Read: Disabled Enabled 1 Read: Disabled Enabled 1 Read: Enabled		Enabled	1			Read:	Ena	bled	ł															
Disabled 0 Read: Disabled 0 Read: Disabled 0 Read: Disabled 0 Read: Enabled 0 Read: Enabled 0 Read: Enabled 0 Read: Disabled 1 Disable 0 Read: Disabled 0 Read: Disabled 0 Read: Disabled 1 Read: Enabled 0 Read: Disable 0 Read: Disable 0 Read: Disable 0 Read: Disabled 0 Read: Disabled 0 Read: Disabled 0 Read: Disabled 0 Read: Enabled 0 Read: Disable 0 Read: Disable 0 Read: Disabled 0 Read: Enabled 0 Read:	B RW NCTS					Write	'1' t	o dis	sab	le ir	iter	rupt	for	eve	ent	NCT	S							
Enabled 1 Read: Enabled C RW RXDRDY		Clear	1			Disable	e																	
C RW RXDRDY Clear 1 Disable Disabled 0 Read: Disabled Disabled 1 Read: Enabled Clear 1 Disabled Disabled 0 Read: Disabled Disabled 0 Read: Enabled Clear 1 Disable Disabled 0 Read: Enabled Clear 1 Disable Disabled 0 Read: Disabled Enabled 1 Read: Enabled Enabled 0 Read: Disable Clear 1 Disable Disable Norte '1' to disable interrupt for event ERROR Enabled 0 Read: Disabled Enabled 0 Read: Disabled Enabled 0 Read: Disabled Enabled 0 Read: Disabled Enabled 1 Read: Enabled Enabled 1 Read: Enabled Enabled 1 Read: Enabled		Disabled	0			Read:	Disa	able	d															
Clear 1 Disable Disabled 0 Read: Disabled Enabled 1 Read: Enabled Write '1' to disable interrupt for event TXDRDY Clear 1 Disabled Enabled 1 Read: Enabled Disabled 0 Read: Disabled Enabled 1 Read: Enabled Enabled 1 Read: Enabled Enabled 1 Read: Enabled Enabled 1 Read: Enabled Enabled 1 Disabled Enabled 1 Read: Enabled Enabled 1 Read: Enabled Enabled Read: Disabled Read: Disabled Enabled Read: Disabled Enabled 1 Read: Enabled		Enabled	1			Read:	Ena	bled	t															
Disabled 0 Read: Disabled Read: Disabled Read: Enabled Drabled 1 Read: Enabled Write '1' to disable interrupt for event TXDRDY Clear 1 Disabled Disabled 0 Read: Disabled Enabled 1 Read: Enabled Enabled 1 Read: Enabled Enabled 1 Read: Enabled Enabled Disable interrupt for event ERROR Clear 1 Disable Clear 1 Disable Disable Read: Disabled Enabled 0 Read: Disabled Enabled 0 Read: Disabled Enabled 1 Read: Enabled Frank RXTO Enabled 1 Read: Enabled Frank RXTO Clear 1 Disable Interrupt for event ERROR Write '1' to disable interrupt for event RXTO Disable	C RW RXDRDY					Write	'1' t	o dis	sab	le ir	iter	rupt	for	eve	ent	RXD	RD۱	′						
Enabled 1 Read: Enabled DRW TXDRDY Clear 1 Disable Disabled 0 Read: Disabled Enabled 1 Read: Enabled ERROR Clear 1 Disabled Enabled 1 Read: Enabled ERROR Clear 1 Disabled Enabled 1 Read: Enabled Enabled 0 Read: Disabled Enabled 1 Read: Enabled Enabled 1 Read: Enabled Enabled 1 Read: Enabled Enabled 1 Disabled Enabled 1 Disabled Enabled 1 Disabled		Clear	1			Disable	e																	
D RW TXDRDY Clear 1 Disable Disabled 0 Read: Disabled Enabled 1 Read: Enabled ERROR Clear 1 Disabled Enabled 1 Read: Enabled Clear 1 Disable Write '1' to disable interrupt for event ERROR Write '1' to disable interrupt for event ERROR Provided 1 Disable Read: Disabled Read: Enabled Read: Enabled FROR READ: Disabled Enabled 1 Read: Enabled Write '1' to disable interrupt for event ERROR Read: Disabled Write '1' to disable interrupt for event RXTO Disable		Disabled	0			Read:	Disa	able	d															
Clear 1 Disable Disabled 0 Read: Disabled E RW FROR Clear 1 Write '1' to disable interrupt for event ERROR Clear 1 Disabled Disabled 0 Read: Enabled E RW FROR Clear 1 Disable Disabled 0 Read: Disabled E Read: Disabled E Read: Disabled E Read: Disabled F RW RXTO Clear 1 Disable Disabled 1 Read: Enabled F Disabled 1 Read: Enabled F RXTO Clear 1 Disable		Enabled	1			Read:	Ena	bled	t															
Bisabled 0 Read: Disabled Read: Disabled ERROR Write '1' to disable interrupt for event ERROR Clear 1 Disabled Disabled 0 Read: Enabled Disabled 1 Read: Disabled Enabled 1 Read: Disabled Enabled 1 Read: Enabled Enabled 1 Read: Enabled FROM RATO Clear 1 Disable	D RW TXDRDY					Write	'1' t	o dis	sab	le ir	iter	rupt	for	eve	ent	TXD	RDY	,						
E RW ERROR Clear Disabled Disabled Read: Enabled Write '1' to disable interrupt for event ERROR Read: Disable Read: Disabled Read: Disabled Read: Enabled F RW RXTO Clear 1 Mrite '1' to disable interrupt for event RXTO Disable		Clear	1			Disable	e																	
Write '1' to disable interrupt for event ERROR Clear 1 Disable Disabled 0 Read: Disabled Enabled 1 Read: Enabled F RW RXTO Clear 1 Disable interrupt for event ERROR Write '1' to disable interrupt for event ERROR Disable		Disabled	0			Read:	Disa	ble	d															
Clear 1 Disable Disabled 0 Read: Disabled Enabled 1 Read: Enabled F RW RXTO Clear 1 Disable Write '1' to disable interrupt for event RXTO Disable		Enabled	1			Read:	Ena	bled	t															
Disabled 0 Read: Disabled Enabled 1 Read: Enabled F RW RXTO Write '1' to disable interrupt for event RXTO Clear 1 Disable	E RW ERROR					Write	'1' t	o dis	sab	le ir	iter	rupt	for	eve	ent	ERR	OR							
Enabled 1 Read: Enabled F RW RXTO Clear 1 Disable		Clear	1			Disable	e																	
F RW RXTO Write '1' to disable interrupt for event RXTO Clear 1 Disable		Disabled	0			Read:	Disa	able	d															
Clear 1 Disable		Enabled	1			Read:	Ena	bled	ł															
	F RW RXTO					Write	'1' t	o dis	sab	le ir	ter	rupt	for	eve	ent	RXT	0							
Disabled 0 Read: Disabled		Clear	1			Disable	e																	
		Disabled	0			Read:	Disa	ble	d															
Enabled 1 Read: Enabled		Enabled	1			Read:	Ena	bled	ł															

6.24.10.15 ERRORSRC

Address offset: 0x480

Error source

Bit r	number		31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				D C B A
Res	et 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW OVERRUN			Overrun error
				A start bit is received while the previous data still lies in
				RXD. (Previous data is lost.)
		NotPresent	0	Read: error not present
		Present	1	Read: error present
В	RW PARITY			Parity error
				A character with bad parity is received, if HW parity check is
				enabled.
		NotPresent	0	Read: error not present
		Present	1	Read: error present
С	RW FRAMING			Framing error occurred
				A valid stop bit is not detected on the serial data input after
				all bits in a character have been received.
		NotPresent	0	Read: error not present
		Present	1	Read: error present
D	RW BREAK			Break condition
				The serial data input is '0' for longer than the length of a
				data frame. (The data frame length is 10 bits without parity
				bit, and 11 bits with parity bit.).
		NotPresent	0	Read: error not present
		Present	1	Read: error present

6.24.10.16 ENABLE

Address offset: 0x500

Enable UART

В	it ni	umber		31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11)				АААА
R	ese	t 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11					Description
Α		RW ENABLE			Enable or disable UART
			Disabled	0	Disable UART
			Enabled	4	Enable UART

6.24.10.17 PSEL.RTS

Address offset: 0x508

Pin select for RTS

Bit no	umber		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			C	A A A A
Rese	t OxFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect

6.24.10.18 PSEL.TXD

Address offset: 0x50C
Pin select for TXD

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	АААА
Rese	t 0xFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect

6.24.10.19 PSEL.CTS

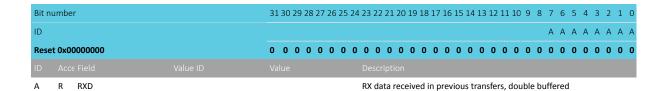
Address offset: 0x510 Pin select for CTS

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	АААА
Rese	t 0xFFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				Description
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect

6.24.10.20 PSEL.RXD

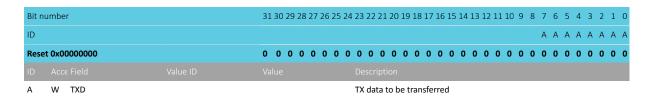
Address offset: 0x514
Pin select for RXD

Bit no	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	АААА
Rese	t 0xFFFFFFF		1 1 1 1 1 1 1 1	. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				Description
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect



6.24.10.21 RXD

Address offset: 0x518


RXD register

6.24.10.22 TXD

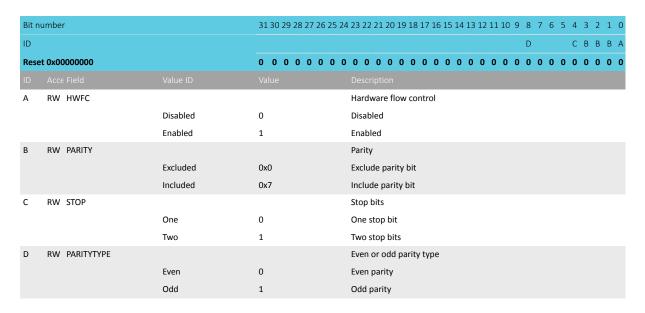
Address offset: 0x51C

TXD register

6.24.10.23 BAUDRATE

Address offset: 0x524

Baud rate. Accuracy depends on the HFCLK source selected.


Reset 0x04000000
ID Accε Field Value ID Value Description A RW BAUDRATE Baud rate
A RW BAUDRATE Baud rate
Baud1200 0x0004F000 1200 baud (actual rate: 1205)
Baud2400 0x0009D000 2400 baud (actual rate: 2396)
Baud4800 0x0013B000 4800 baud (actual rate: 4808)
Baud9600 0x00275000 9600 baud (actual rate: 9598)
Baud14400 0x003B0000 14400 baud (actual rate: 14414)
Baud19200 0x004EA000 19200 baud (actual rate: 19208)
Baud28800 0x0075F000 28800 baud (actual rate: 28829)
Baud31250 0x00800000 31250 baud
Baud38400 0x009D5000 38400 baud (actual rate: 38462)
Baud56000 0x00E50000 56000 baud (actual rate: 55944)
Baud57600 0x00EBF000 57600 baud (actual rate: 57762)
Baud76800 0x013A9000 76800 baud (actual rate: 76923)
Baud115200 0x01D7E000 115200 baud (actual rate: 115942)
Baud230400 0x03AFB000 230400 baud (actual rate: 231884)
Baud250000 0x04000000 250000 baud
Baud460800 0x075F7000 460800 baud (actual rate: 470588)
Baud921600 0x0EBED000 921600 baud (actual rate: 941176)
Baud1M 0x10000000 1Mega baud

6.24.10.24 CONFIG

Address offset: 0x56C

Configuration of parity and hardware flow control

6.24.11 Electrical specification

6.24.11.1 UART electrical specification

Symbol	Description	Min.	Тур.	Max.	Units
f _{UART}	Baud rate for UART ³⁴ .			1000	kbps
t _{UART,CTSH}	CTS high time	1			μs
t _{UART.START}	Time from STARTRX/STARTTX task to transmission started		1		μs

6.25 UARTE — Universal asynchronous receiver/ transmitter with EasyDMA

The Universal asynchronous receiver/transmitter with EasyDMA (UARTE) offers fast, full-duplex, asynchronous serial communication with built-in flow control (CTS, RTS) support in hardware at a rate up to 1 Mbps, and EasyDMA data transfer from/to RAM.

Listed here are the main features for UARTE:

- Full-duplex operation
- · Automatic hardware flow control
- Optional even parity bit checking and generation
- EasyDMA
- Up to 1 Mbps baudrate
- Return to IDLE between transactions supported (when using HW flow control)
- One or two stop bit
- · Least significant bit (LSB) first

³⁴ High baud rates may require GPIOs to be set as High Drive, see GPIO chapter for more details.

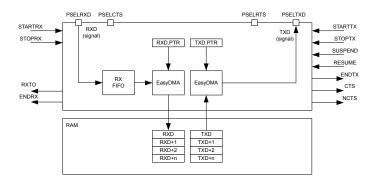


Figure 130: UARTE configuration

The GPIOs used for each UART interface can be chosen from any GPIO on the device and are independently configurable. This enables great flexibility in device pinout and efficient use of board space and signal routing.

Note: External crystal oscillator must be enabled to obtain sufficient clock accuracy for stable communication. See CLOCK — Clock control on page 72 for more information.

6.25.1 EasyDMA

The UARTE implements EasyDMA for reading and writing to and from the RAM.

If the TXD.PTR and the RXD.PTR are not pointing to the Data RAM region, an EasyDMA transfer may result in a HardFault or RAM corruption. See Memory on page 17 for more information about the different memory regions.

The .PTR and .MAXCNT registers are double-buffered. They can be updated and prepared for the next RX/TX transmission immediately after having received the RXSTARTED/TXSTARTED event.

The ENDRX/ENDTX event indicates that EasyDMA has finished accessing respectively the RX/TX buffer in RAM.

6.25.2 Transmission

The first step of a DMA transmission is storing bytes in the transmit buffer and configuring EasyDMA. This is achieved by writing the initial address pointer to TXD.PTR, and the number of bytes in the RAM buffer to TXD.MAXCNT. The UARTE transmission is started by triggering the STARTTX task.

After each byte has been sent over the TXD line, a TXDRDY event will be generated.

When all bytes in the TXD buffer, as specified in the TXD.MAXCNT register, have been transmitted, the UARTE transmission will end automatically and an ENDTX event will be generated.

A UARTE transmission sequence is stopped by triggering the STOPTX task, a TXSTOPPED event will be generated when the UARTE transmitter has stopped.

If the ENDTX event has not already been generated when the UARTE transmitter has come to a stop, the UARTE will generate the ENDTX event explicitly even though all bytes in the TXD buffer, as specified in the TXD.MAXCNT register, have not been transmitted.

If flow control is enabled through the HWFC field in the CONFIG register, a transmission will be automatically suspended when CTS is deactivated and resumed when CTS is activated again, as illustrated in UARTE transmission on page 357. A byte that is in transmission when CTS is deactivated will be fully transmitted before the transmission is suspended.

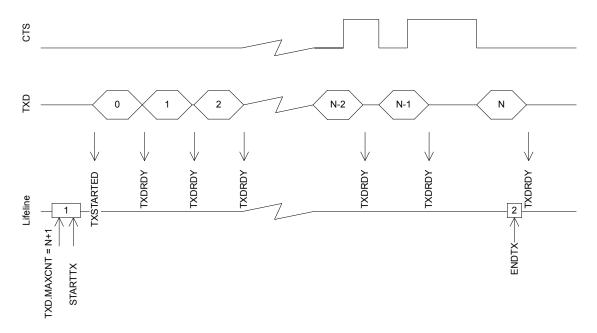


Figure 131: UARTE transmission

The UARTE transmitter will be in its lowest activity level, and consume the least amount of energy, when it is stopped, i.e. before it is started via STARTTX or after it has been stopped via STOPTX and the TXSTOPPED event has been generated. See POWER — Power supply on page 52 for more information about power modes.

6.25.3 Reception

The UARTE receiver is started by triggering the STARTRX task. The UARTE receiver is using EasyDMA to store incoming data in an RX buffer in RAM.

The RX buffer is located at the address specified in the RXD.PTR register. The RXD.PTR register is double-buffered and it can be updated and prepared for the next STARTRX task immediately after the RXSTARTED event is generated. The size of the RX buffer is specified in the RXD.MAXCNT register and the UARTE will generate an ENDRX event when it has filled up the RX buffer, see UARTE reception on page 358.

For each byte received over the RXD line, an RXDRDY event will be generated. This event is likely to occur before the corresponding data has been transferred to Data RAM.

The RXD.AMOUNT register can be queried following an ENDRX event to see how many new bytes have been transferred to the RX buffer in RAM since the previous ENDRX event.

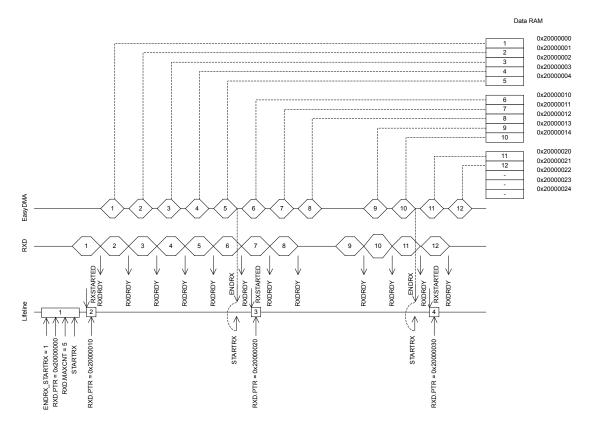


Figure 132: UARTE reception

The UARTE receiver is stopped by triggering the STOPRX task. An RXTO event is generated when the UARTE has stopped. The UARTE will make sure that an impending ENDRX event will be generated before the RXTO event is generated. This means that the UARTE will guarantee that no ENDRX event will be generated after RXTO, unless the UARTE is restarted or a FLUSHRX command is issued after the RXTO event is generated.

Important: If the ENDRX event has not already been generated when the UARTE receiver has come to a stop, which implies that all pending content in the RX FIFO has been moved to the RX buffer, the UARTE will generate the ENDRX event explicitly even though the RX buffer is not full. In this scenario the ENDRX event will be generated before the RXTO event is generated.

To be able to know how many bytes have actually been received into the RX buffer, the CPU can read the RXD.AMOUNT register following the ENDRX event or the RXTO event.

The UARTE is able to receive up to four bytes after the STOPRX task has been triggered as long as these are sent in succession immediately after the RTS signal is deactivated. This is possible because after the RTS is deactivated the UARTE is able to receive bytes for an extended period equal to the time it takes to send 4 bytes on the configured baud rate.

After the RXTO event is generated the internal RX FIFO may still contain data, and to move this data to RAM the FLUSHRX task must be triggered. To make sure that this data does not overwrite data in the RX buffer, the RX buffer should be emptied or the RXD.PTR should be updated before the FLUSHRX task is triggered. To make sure that all data in the RX FIFO is moved to the RX buffer, the RXD.MAXCNT register must be set to RXD.MAXCNT > 4, see UARTE reception with forced stop via STOPRX on page 359. The UARTE will generate the ENDRX event after completing the FLUSHRX task even if the RX FIFO was empty or if the RX buffer does not get filled up. To be able to know how many bytes have actually been received into the RX buffer in this case, the CPU can read the RXD.AMOUNT register following the ENDRX event.

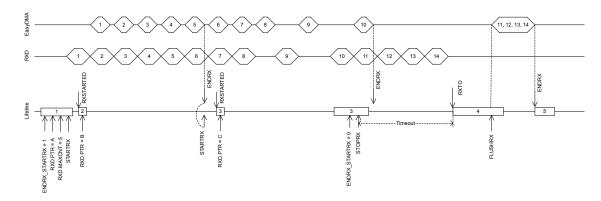


Figure 133: UARTE reception with forced stop via STOPRX

If HW flow control is enabled through the HWFC field in the CONFIG register, the RTS signal will be deactivated when the receiver is stopped via the STOPRX task or when the UARTE is only able to receive four more bytes in its internal RX FIFO.

With flow control disabled, the UARTE will function in the same way as when the flow control is enabled except that the RTS line will not be used. This means that no signal will be generated when the UARTE has reached the point where it is only able to receive four more bytes in its internal RX FIFO. Data received when the internal RX FIFO is filled up, will be lost.

The UARTE receiver will be in its lowest activity level, and consume the least amount of energy, when it is stopped, i.e. before it is started via STARTRX or after it has been stopped via STOPRX and the RXTO event has been generated. See POWER — Power supply on page 52 for more information about power modes.

6.25.4 Error conditions

An ERROR event, in the form of a framing error, will be generated if a valid stop bit is not detected in a frame. Another ERROR event, in the form of a break condition, will be generated if the RXD line is held active low for longer than the length of a data frame. Effectively, a framing error is always generated before a break condition occurs.

An ERROR event will not stop reception. If the error was a parity error, the received byte will still be transferred into Data RAM, and so will following incoming bytes. If there was a framing error (wrong stop bit), that specific byte will NOT be stored into Data RAM, but following incoming bytes will.

6.25.5 Using the UARTE without flow control

If flow control is not enabled, the interface will behave as if the CTS and RTS lines are kept active all the time.

6.25.6 Parity and stop bit configuration

Automatic even parity generation for both transmission and reception can be configured using the register CONFIG on page 373. If odd parity is desired, it can be configured using the register CONFIG on page 373. See the register description for details.

The amount of stop bits can also be configured through the register CONFIG on page 373.

6.25.7 Low power

When putting the system in low power and the peripheral is not needed, lowest possible power consumption is achieved by stopping, and then disabling the peripheral.

The STOPTX and STOPRX tasks may not be always needed (the peripheral might already be stopped), but if STOPTX and/or STOPRX is sent, software shall wait until the TXSTOPPED and/or RXTO event is received in response, before disabling the peripheral through the ENABLE register.

6.25.8 Pin configuration

The different signals RXD, CTS (Clear To Send, active low), RTS (Request To Send, active low), and TXD associated with the UARTE are mapped to physical pins according to the configuration specified in the PSEL.RXD, PSEL.RTS, and PSEL.TXD registers respectively.

The PSEL.RXD, PSEL.CTS, PSEL.RTS, and PSEL.TXD registers and their configurations are only used as long as the UARTE is enabled, and retained only for the duration the device is in ON mode. PSEL.RXD, PSEL.RTS, PSEL.RTS and PSEL.TXD must only be configured when the UARTE is disabled.

To secure correct signal levels on the pins by the UARTE when the system is in OFF mode, the pins must be configured in the GPIO peripheral as described in GPIO configuration before enabling peripheral on page 360.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in unpredictable behavior.

UARTE signal	UARTE pin	Direction	Output value
RXD	As specified in PSEL.RXD	Input	Not applicable
CTS	As specified in PSEL.CTS	Input	Not applicable
RTS	As specified in PSEL.RTS	Output	1
TXD	As specified in PSEL.TXD	Output	1

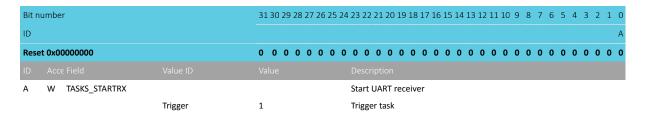
Table 105: GPIO configuration before enabling peripheral

6.25.9 Registers

Base address	Peripheral	Instance	Description	Configuration
0x40002000	UARTE	UARTE0	Universal asynchronous receiver/	
			transmitter with EasyDMA, unit 0	

Table 106: Instances

Register	Offset	Description
TASKS_STARTRX	0x000	Start UART receiver
TASKS_STOPRX	0x004	Stop UART receiver
TASKS_STARTTX	0x008	Start UART transmitter
TASKS_STOPTX	0x00C	Stop UART transmitter
TASKS_FLUSHRX	0x02C	Flush RX FIFO into RX buffer
EVENTS_CTS	0x100	CTS is activated (set low). Clear To Send.
EVENTS_NCTS	0x104	CTS is deactivated (set high). Not Clear To Send.
EVENTS_RXDRDY	0x108	Data received in RXD (but potentially not yet transferred to Data RAM)
EVENTS_ENDRX	0x110	Receive buffer is filled up
EVENTS_TXDRDY	0x11C	Data sent from TXD
EVENTS_ENDTX	0x120	Last TX byte transmitted
EVENTS_ERROR	0x124	Error detected
EVENTS_RXTO	0x144	Receiver timeout
EVENTS_RXSTARTED	0x14C	UART receiver has started
EVENTS_TXSTARTED	0x150	UART transmitter has started
EVENTS_TXSTOPPED	0x158	Transmitter stopped
SHORTS	0x200	Shortcuts between local events and tasks
INTEN	0x300	Enable or disable interrupt
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt



Register	Offset	Description
ERRORSRC	0x480	Error source
		Note : this register is read / write one to clear.
ENABLE	0x500	Enable UART
PSEL.RTS	0x508	Pin select for RTS signal
PSEL.TXD	0x50C	Pin select for TXD signal
PSEL.CTS	0x510	Pin select for CTS signal
PSEL.RXD	0x514	Pin select for RXD signal
BAUDRATE	0x524	Baud rate. Accuracy depends on the HFCLK source selected.
RXD.PTR	0x534	Data pointer
RXD.MAXCNT	0x538	Maximum number of bytes in receive buffer
RXD.AMOUNT	0x53C	Number of bytes transferred in the last transaction
TXD.PTR	0x544	Data pointer
TXD.MAXCNT	0x548	Maximum number of bytes in transmit buffer
TXD.AMOUNT	0x54C	Number of bytes transferred in the last transaction
CONFIG	0x56C	Configuration of parity and hardware flow control

Table 107: Register overview

6.25.9.1 TASKS_STARTRX

Address offset: 0x000 Start UART receiver

6.25.9.2 TASKS_STOPRX

Address offset: 0x004 Stop UART receiver

Bit number		31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			А
Reset 0x00000000		0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A W TASKS_S	STOPRX		Stop UART receiver
	Trigger	1	Trigger task

6.25.9.3 TASKS_STARTTX

Address offset: 0x008 Start UART transmitter

Bit n	ıun	nbe	r		31 3	0 29	9 28	3 27	26	25	24	23	22 :	21 2	20 1	9 1	8 17	⁷ 16	15	14	13	12	11	10 !	9	8	7 (6 5	5 4	1 3	2	1	0
ID																																	Α
Rese	et (0x0	0000000		0 (0	0	0	0	0	0	0	0	0	0 () (0	0	0	0	0	0	0	0	0	0 () (0 0	0	0	0	0	0
ID																																	
Α	١	W	TASKS_STARTTX									Sta	rt L	JAR	T tr	ans	mit	er															
				Trigger	1						Trigger task																						

6.25.9.4 TASKS_STOPTX

Address offset: 0x00C Stop UART transmitter

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	W TASKS_STOPTX			Stop UART transmitter
		Trigger	1	Trigger task

6.25.9.5 TASKS_FLUSHRX

Address offset: 0x02C

Flush RX FIFO into RX buffer

Bit number		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			A
Reset 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A W TASKS_FLUSHRX			Flush RX FIFO into RX buffer
	Trigger	1	Trigger task

6.25.9.6 EVENTS_CTS

Address offset: 0x100

CTS is activated (set low). Clear To Send.

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW EVENTS_CTS			CTS is activated (set low). Clear To Send.
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.25.9.7 EVENTS_NCTS

Address offset: 0x104

CTS is deactivated (set high). Not Clear To Send.

Bit number		31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			A
Reset 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A RW EVENTS_NCTS			CTS is deactivated (set high). Not Clear To Send.
	NotGenerated	0	Event not generated
	Generated	1	Event generated

6.25.9.8 EVENTS_RXDRDY

Address offset: 0x108

Data received in RXD (but potentially not yet transferred to Data RAM)

Bit n	umber		31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	t 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW EVENTS_RXDRDY			Data received in RXD (but potentially not yet transferred to
				Data RAM)
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.25.9.9 EVENTS_ENDRX

Address offset: 0x110

Receive buffer is filled up

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				Α
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW EVENTS_ENDRX			Receive buffer is filled up
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.25.9.10 EVENTS_TXDRDY

Address offset: 0x11C

Data sent from TXD

Bit r	number		31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Res	et 0x00000000		0 0 0 0 0 0 0	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$
				Description
Α	RW EVENTS_TXDRDY			Data sent from TXD
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.25.9.11 EVENTS_ENDTX

Address offset: 0x120 Last TX byte transmitted

Bit number		31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			A
Reset 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A RW EVENTS_ENDTX			Last TX byte transmitted
	NotGenerated	0	Event not generated
	Generated	1	Event generated

6.25.9.12 EVENTS_ERROR

Address offset: 0x124

Error detected

Bit n	umber		31	30	29	28 2	27 26	5 25	24	23	22	21 2	20 1	19 1	3 17	16	15	14 :	13 1	2 11	. 10	9	8 7	7 6	5 5	4	3	2	1 0
ID																													Α
Rese	t 0x00000000		0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0 (0	0	0	0 () (0	0	0	0	0 0
ID																													
Α	RW EVENTS_ERROR									Err	ror (dete	ecte	ed															
		NotGenerated	0							Eve	ent	not	gei	nera	ted														
		Generated	1							Eve	ent	gen	era	ted															

6.25.9.13 EVENTS_RXTO

Address offset: 0x144 Receiver timeout

Bit number		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			А
Reset 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A RW EVENTS_RXTO			Receiver timeout
	NotGenerated	0	Event not generated
	Generated	1	Event generated

6.25.9.14 EVENTS_RXSTARTED

Address offset: 0x14C
UART receiver has started

Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	t 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW EVENTS_RXSTARTED			UART receiver has started
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.25.9.15 EVENTS_TXSTARTED

Address offset: 0x150

UART transmitter has started

Bit number		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			А
Reset 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A RW EVENTS_TXSTARTED			UART transmitter has started
	NotGenerated	0	Event not generated
	Generated	1	Event generated

6.25.9.16 EVENTS_TXSTOPPED

Address offset: 0x158
Transmitter stopped

Bit nu	umber		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW EVENTS_TXSTOPPED			Transmitter stopped
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.25.9.17 SHORTS

Address offset: 0x200

Shortcuts between local events and tasks

Bit n	umber		31 30	29	28	27	26	25	24 2	23 2	2 2	21 2	20	19 1	18 :	17 1	.6	15 1	14 :	L3 1	2 1	1 10	9	8	7	6	5	4	3	2 1	. 0
ID																										D	С				
Rese	t 0x00000000		0 0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	D 0	0
ID										Des																					
С	RW ENDRX_STARTRX									Sho	rtc	ut k	oet	we	en	eve	nt	ENI	OR)	(an	d ta	ısk S	STAI	RTR	X						
		Disabled	0						-	Disa	ble	e sh	or	tcu	t																
		Enabled	1						1	Enal	ble	e sh	ort	cut																	
D	RW ENDRX_STOPRX									Sho	rtc	ut k	oet	we	en	eve	nt	ENI	OR)	(an	d ta	sk :	то	PRX							
		Disabled	0						-	Disa	ble	e sh	or	tcu	t																
		Enabled	1						- 1	Enal	ble	e sh	ort	cut																	

6.25.9.18 INTEN

Address offset: 0x300

Enable or disable interrupt

Bit number		31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			L J I H G F E D C B A
Reset 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A RW CTS			Enable or disable interrupt for event CTS
	Disabled	0	Disable
	Enabled	1	Enable
B RW NCTS			Enable or disable interrupt for event NCTS
	Disabled	0	Disable
	Enabled	1	Enable

Bit r	number		31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				L J I H G F E D C B A
	et 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID		Value ID		
С	RW RXDRDY			Enable or disable interrupt for event RXDRDY
		Disabled	0	Disable
		Enabled	1	Enable
D	RW ENDRX			Enable or disable interrupt for event ENDRX
		Disabled	0	Disable
		Enabled	1	Enable
E	RW TXDRDY			Enable or disable interrupt for event TXDRDY
		Disabled	0	Disable
		Enabled	1	Enable
F	RW ENDTX			Enable or disable interrupt for event ENDTX
		Disabled	0	Disable
		Enabled	1	Enable
G	RW ERROR			Enable or disable interrupt for event ERROR
		Disabled	0	Disable
		Enabled	1	Enable
Н	RW RXTO			Enable or disable interrupt for event RXTO
		Disabled	0	Disable
		Enabled	1	Enable
I	RW RXSTARTED			Enable or disable interrupt for event RXSTARTED
		Disabled	0	Disable
		Enabled	1	Enable
J	RW TXSTARTED			Enable or disable interrupt for event TXSTARTED
		Disabled	0	Disable
		Enabled	1	Enable
L	RW TXSTOPPED			Enable or disable interrupt for event TXSTOPPED
		Disabled	0	Disable
		Enabled	1	Enable

6.25.9.19 INTENSET

Address offset: 0x304

Enable interrupt

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				L J I H G F E D C B A
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW CTS			Write '1' to enable interrupt for event CTS
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
В	RW NCTS			Write '1' to enable interrupt for event NCTS
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
С	RW RXDRDY			Write '1' to enable interrupt for event RXDRDY
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

Bit n	number		31 30 29 28 27	26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					L J I H G F E D C B A
Rese	et 0x00000000		0 0 0 0 0	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D	RW ENDRX				Write '1' to enable interrupt for event ENDRX
		Set	1		Enable
		Disabled	0		Read: Disabled
		Enabled	1		Read: Enabled
E	RW TXDRDY				Write '1' to enable interrupt for event TXDRDY
		Set	1		Enable
		Disabled	0		Read: Disabled
		Enabled	1		Read: Enabled
F	RW ENDTX				Write '1' to enable interrupt for event ENDTX
		Set	1		Enable
		Disabled	0		Read: Disabled
		Enabled	1		Read: Enabled
3	RW ERROR				Write '1' to enable interrupt for event ERROR
		Set	1		Enable
		Disabled	0		Read: Disabled
		Enabled	1		Read: Enabled
Н	RW RXTO				Write '1' to enable interrupt for event RXTO
		Set	1		Enable
		Disabled	0		Read: Disabled
		Enabled	1		Read: Enabled
I	RW RXSTARTED				Write '1' to enable interrupt for event RXSTARTED
		Set	1		Enable
		Disabled	0		Read: Disabled
		Enabled	1		Read: Enabled
J	RW TXSTARTED				Write '1' to enable interrupt for event TXSTARTED
		Set	1		Enable
		Disabled	0		Read: Disabled
		Enabled	1		Read: Enabled
L	RW TXSTOPPED				Write '1' to enable interrupt for event TXSTOPPED
		Set	1		Enable
		Disabled	0		Read: Disabled
		Enabled	1		Read: Enabled

6.25.9.20 INTENCLR

Address offset: 0x308

Disable interrupt

Bit number		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			L J I H G F E D C B A
Reset 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A RW CTS			Write '1' to disable interrupt for event CTS
	Clear	1	Disable
	Disabled	0	Read: Disabled
	Enabled	1	Read: Enabled
B RW NCTS			Write '1' to disable interrupt for event NCTS
	Clear	1	Disable
	Disabled	0	Read: Disabled

Bit n	umber		31 30 29 28 27 26 2	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 (
ID				L JIH GFE D CBA
Rese	t 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		Enabled	1	Read: Enabled
С	RW RXDRDY			Write '1' to disable interrupt for event RXDRDY
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
D	RW ENDRX			Write '1' to disable interrupt for event ENDRX
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
E	RW TXDRDY			Write '1' to disable interrupt for event TXDRDY
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
F	RW ENDTX			Write '1' to disable interrupt for event ENDTX
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
G	RW ERROR			Write '1' to disable interrupt for event ERROR
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Н	RW RXTO			Write '1' to disable interrupt for event RXTO
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
I	RW RXSTARTED			Write '1' to disable interrupt for event RXSTARTED
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
J	RW TXSTARTED			Write '1' to disable interrupt for event TXSTARTED
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
L	RW TXSTOPPED			Write '1' to disable interrupt for event TXSTOPPED
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

6.25.9.21 ERRORSRC

Address offset: 0x480

Error source

Note: this register is read / write one to clear.

Bit r	number		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				D C B A
Res	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW OVERRUN			Overrun error
				A start bit is received while the previous data still lies in
				RXD. (Previous data is lost.)
		NotPresent	0	Read: error not present
		Present	1	Read: error present
В	RW PARITY			Parity error
				A character with bad parity is received, if HW parity check is
				enabled.
		NotPresent	0	Read: error not present
		Present	1	Read: error present
С	RW FRAMING			Framing error occurred
				A valid stop bit is not detected on the serial data input after
				all bits in a character have been received.
		NotPresent	0	Read: error not present
		Present	1	Read: error present
D	RW BREAK			Break condition
				The serial data input is '0' for longer than the length of a
				data frame. (The data frame length is 10 bits without parity
				bit, and 11 bits with parity bit.).
		NotPresent	0	Read: error not present
		Present	1	Read: error present

6.25.9.22 ENABLE

Address offset: 0x500

Enable UART

Bit number	31 30 29 28 27 26 25 24 23 22 21 20	19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		АААА
Reset 0x00000000	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		
A RW ENABLE	Enable or di	isable UARTE
Disabled	0 Disable UAF	RTE
Enabled	8 Enable UAR	TE

6.25.9.23 PSEL.RTS

Address offset: 0x508

Pin select for RTS signal

Bit no	umber		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			C	A A A A
Rese	t OxFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect

6.25.9.24 PSEL.TXD

Address offset: 0x50C

Pin select for TXD signal

Bit no	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	АААА
Rese	t OxFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				Description
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect

6.25.9.25 PSEL.CTS

Address offset: 0x510

Pin select for CTS signal

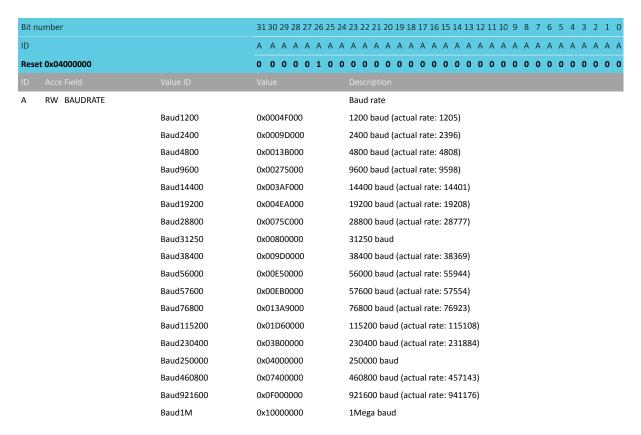
Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	АААА
Rese	t OxFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				Description
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect

6.25.9.26 PSEL.RXD

Address offset: 0x514

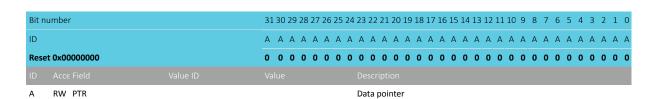
Pin select for RXD signal

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			С	АААА
Rese	et OxFFFFFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID				Description
Α	RW PIN		[031]	Pin number
С	RW CONNECT			Connection
		Disconnected	1	Disconnect
		Connected	0	Connect



6.25.9.27 BAUDRATE

Address offset: 0x524


Baud rate. Accuracy depends on the HFCLK source selected.

6.25.9.28 RXD.PTR

Address offset: 0x534

Data pointer

Note: See the memory chapter for details about which memories are available for EasyDMA.

6.25.9.29 RXD.MAXCNT

Address offset: 0x538

Maximum number of bytes in receive buffer

Α	RW MAXCNT	[10x7FFF]		Max	mum	numl	ber o	f byte	s in r	ecei	ive b	uffe	r							
ID																				ı
Res	et 0x00000000	0 0 0 0 0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0	0	0	0 0	0	0	0	0 0	0	D
ID									Α	A A	A A	Α	Α.	А А	A	Α	Α	А А	Α	4
Bit r	umber	31 30 29 28 27 26	25 24	23 2	2 21 2	0 19 1	18 17	16 19	5 14 1	3 1	2 11	10	9	8 7	6	5	4	3 2	1	C

6.25.9.30 RXD.AMOUNT

Address offset: 0x53C

Number of bytes transferred in the last transaction

Α	R AMOUNT	[10x7FFF]	Number of bytes transferred in the last transaction
ID			
Res	et 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID			A A A A A A A A A A A A A A A A A A A
Bit	number	31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

6.25.9.31 TXD.PTR

Address offset: 0x544

Data pointer

Note: See the memory chapter for details about which memories are available for EasyDMA.

6.25.9.32 TXD.MAXCNT

Address offset: 0x548

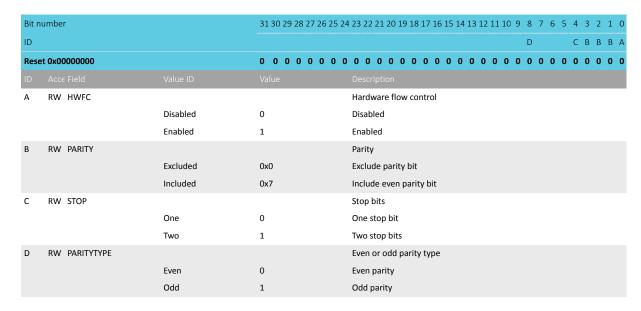
Maximum number of bytes in transmit buffer

ID			
Rese	et 0x00000000	0 0 0 0 0 0	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$
ID			A A A A A A A A A A A A A A A
Bit n	umber	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.25.9.33 TXD.AMOUNT

Address offset: 0x54C

Number of bytes transferred in the last transaction



Α	R AMOUNT	[10x7FFF]	Number of bytes transferred in the last transaction
ID			Description
Rese	t 0x0000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID			A A A A A A A A A A A A A A A A A A A
Bit n	umber	31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.25.9.34 CONFIG

Address offset: 0x56C

Configuration of parity and hardware flow control

6.25.10 Electrical specification

6.25.10.1 UARTE electrical specification

Symbol	Description	Min.	Тур.	Max.	Units
f _{UARTE}	Baud rate for UARTE ³⁵ .			1000	kbps
t _{UARTE,CTSH}	CTS high time	1			μs
t _{UARTE,START}	Time from STARTRX/STARTTX task to transmission started		1		μs

6.26 USBD — Universal serial bus device

The USB device (USBD) controller implements a full speed USB device function that meets 2.0 revision of the USB specification.

High baud rates may require GPIOs to be set as High Drive, see GPIO chapter for more details.

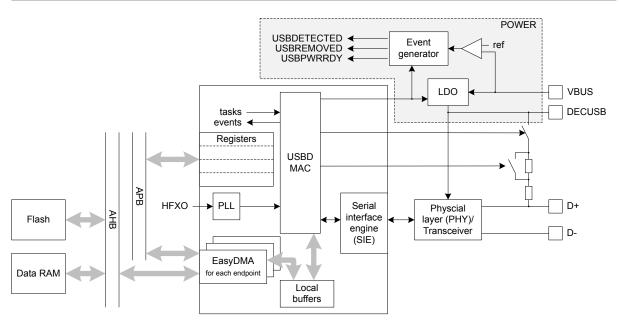


Figure 134: USB device block diagram

Listed here are the main features for USBD:

- Implements full-speed (12 Mbps) device fully compliant to Universal Serial Bus Specification Revision 2.0, including following engineering change notices (ECNs) issued by USB Implementers Forum:
 - Pull-up/pull-down Resistors ECN
 - 5V Short Circuit Withstand Requirement Change ECN
- USB device stack available in the Nordic SDK
- Integrated (on-chip) USB transceiver (PHY)
- Software controlled on-chip pull-up on D+
- Endpoints:
 - 2 control (1 IN, 1 OUT)
 - 14 bulk/interrupt (7 IN, 7 OUT)
 - 2 isochronous (1 IN, 1 OUT)
- Supports double buffering for isochronous (ISO) endpoints (IN/OUT)
- Supports USB suspend, resume, and remote wake-up
- 64 bytes buffer size for each bulk/interrupt endpoint
- Up to 1023 bytes buffer size for ISO endpoints
- EasyDMA for all data transfers

6.26.1 USB device states

The behavior of a USB device can be modelled through a state diagram.

The USB specification revision 2.0 (see *Chapter 9 USB Device Framework*) defines a number of states for a USB device, as illustrated below.

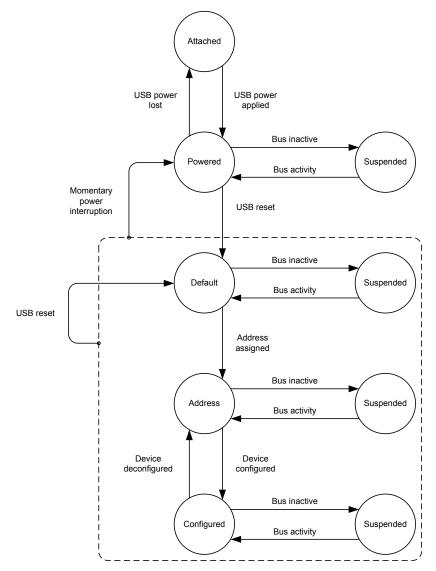


Figure 135: Device state diagram

The device must change state according to host-initiated traffic and USB bus states. It is up to the software to implement a state machine that matches the above definition. To detect the presence or absence of USB supply (VBUS), the POWER chapter defines two events, USBDETECTED and USBREMOVED, which can be used to implement the state machine.

As a general rule when implementing the software, the host behavior shall never be assumed to be predictable. In particular the sequence of commands received during an enumeration. The software shall always react to the current bus conditions or commands sent by the host.

6.26.2 USB terminology

The USB specification defines bus states, rather than logic levels on the D+ and D- lines.

For a full speed device, the bus state where the D+ line is high and the D- line is low is defined as the J state. The bus state where D+ is low and D- high is called the K state.

An idle bus, where D+ and D- lines are only polarized through the pull-up on D+ and pull-downs on the host side, will be in J state.

Both lines low are called SEO (single-ended 0), and both lines high SE1 (single-ended 1).

6.26.3 USB pins

The USBD peripheral features a number of dedicated pins.

The dedicated USB pins can be grouped in two categories, signal and power. The signal pins consist of the D+ and D- pins, which are to be connected to the USB host. They are dedicated pins, and not available as standard GPIOs. The USBD implements the *5V Short Circuit Withstand ECN* meaning that these two pins are not 5 V tolerant.

The signal pins and the pull-up will operate only while VBUS is in its valid voltage range, and USBD is enabled through the ENABLE register. For details on the USB power supply and VBUS detection, see POWER.

See Pin assignments on page 418 for more information about the pinout.

6.26.4 USBD power-up sequence

The physical layer interface (PHY)/USB transceiver is powered separately from the rest of the device (VBUS pin), which has some implications on the USBD power-up sequence.

The device is not able to properly signal its presence to the USB host and handle traffic from the host, unless the PHY's power supply is enabled and stable. Turning the PHY's power supply on/off is directly linked to register ENABLE. The device provides events that help synchronizing software to the various steps during the power-up sequence.

To make sure that all resources in USBD are available and the dedicated USB voltage regulator stabilized, the following is recommended:

- Enable USBD after VBUS has been detected only
- Turn the USB pull-up on after:
 - · USBPWRRDY event has occurred
 - USBEVENT has occurred, with the READY condition flagged in EVENTCAUSE

The following sequence chart illustrates a typical handling of VBUS power-up:

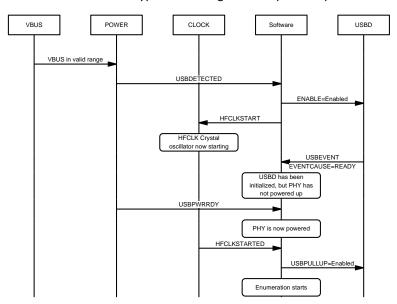


Figure 136: VBUS power-up sequence

Upon VBUS removal detection, signalled by the USBREMOVED event described in POWER, it is recommended to let on-going EasyDMA transfers finish (wait for the relevant ENDEPIN[n], ENDISOIN, ENDEPOUT[n] or ENDISOOUT event, see EasyDMA on page 379), before disabling USBD (by writing ENABLE=Disabled). Reading the ENABLE register will return Enabled until USBD is completely disabled.

6.26.5 USB pull-up

The USB pull-up serves two purposes - it indicates to the host that the device is connected to the USB bus, and it indicates the device's speed capability.

When no pull-up is connected to the USB bus, the host sees both D+ and D- lines low, as they are pulled down on the host side by 15 k Ω resistors. The device is not seen by the host and hence in detached state, even though it could be physically connected to the host. USB specification does not allow to draw any current on VBUS in that situation.

When a full-speed device connects its 1.5 k Ω pull-up to D+, the host sees the corresponding line high. The device is then in the attached state. During the enumeration process, the host attempts to determine if the full-speed device also supports higher speeds and initiates communication with the device to further identify it. The USBD peripheral implemented in this device supports only full-speed (12 Mbps), and thus ignores the negotiation for higher speeds in accordance with the USB specification revision 2.0.

Register USBPULLUP provides means to connect or disconnect the pull-up on D+ under software control. This allows the software to control when USB enumeration takes place. It also allows to emulate a physical disconnect from the USB bus, for instance when re-enumeration is required. USBPULLUP has to be enabled to allow the USBD to handle USB traffic and generate appropriate events. This forbids the use of an external pull-up.

Note that disconnecting the pull-up through register USBPULLUP while connected to a host, will result in both D+ and D- lines to be pulled low by the host's pull-down resistors. However, as mentioned above, this will also inhibit the generation of the USBRESET event. The pull-up is disabled by default after a chip reset.

The pull-up shall only get connected after USBD has been enabled through register ENABLE. The USB pull-up value is automatically changed depending on the bus activity, as specified in *Resistor ECN* which amends the original USB specification version 2.0. The user does not have access to this function, it is handled in hardware.

While they should never be used in normal traffic activity, lines D+ and D- may at any time be forced into state specified in register DPDMVALUE by the task DPDMDRIVE. The DPDMNODRIVE task stops driving them, and PHY returns to normal operation.

6.26.6 USB reset

The USB specification defines a USB reset, which is not be confused with a chip reset. The USB reset is a normal USB bus condition, and is used as part of the enumeration sequence, it does not reset the chip.

The USB reset results from a single-ended low state (SE0) on lines D+/D- for a $t_{USB,DETRST}$ amount of time. Only the host is allowed to drive a USB reset condition on the bus. The UBSD peripheral automatically interprets a SE0 longer than $t_{USB,DETRST}$ as a USB reset. When the device detects a USB reset and generates a USBRESET event, the device USB stack and related parts of the application shall re-initialize themselves, and go back to the default state.

Some of the registers in the USBD peripheral get automatically reset to a known state, in particular all data endpoints are disabled and the USBADDR reset to 0.

After the device has connected to the USB bus (i.e. after VBUS is applied), the device shall not respond to any traffic from the time the pull-up is enabled until it has seen a USB reset condition. This is automatically ensured by the USBD.

After a USB reset, the device shall be fully responsive after at most T_{RSTRCY} (according to chapter 7 in the USB specification). Software shall take into account this time that takes the hardware to recover from a USB reset condition.

6.26.7 USB suspend and resume

Normally, the host will maintain activity on the USB at least every millisecond according to USB specification. A USB device will enter suspend when there is no activity on the bus (idle) for a given time. The device will resume operation when it receives any non idle signalling.

To signal that the device shall go into low power mode (suspend), the host stops activity on the USB bus, which becomes idle. Only the device pull-up and host pull-downs act on D+ and D-, and the bus is thus kept at a constant J state. It is up to the device to detect this lack of activity, and enter the low power mode (suspend) within a specified time.

The USB host can decide to suspend or resume USB activity at any time. If remote wake-up is enabled, the device may signal to the host to resume from suspend.

6.26.7.1 Entering suspend

The USBD peripheral automatically detects lack of activity for more than a defined amount of time, and performs steps needed to enter suspend.

When no activity has been detected for longer than $t_{USB,SUSPEND}$, the USBD generates the USBEVENT event with SUSPEND bit set in register EVENTCAUSE. The software shall ensure that the current drawn from the USB supply line VBUS is within the specified limits before T_{2SUSP} , as defined in chapter 7 of the USB specification. In order to reduce idle current of USBD, the software must explicitly place the USBD in low power mode through writing LowPower to register LOWPOWER.

In order to save power, and provided that no other peripheral needs it, the crystal oscillator (HFXO) in CLOCK may be disabled by software during the USB suspend, while the USB pull-up is disconnected, or when VBUS is not present. Software must explicitly enable it at any other time. The USBD will not be able to respond to USB traffic unless HFXO is enabled and stable.

6.26.7.2 Host-initiated resume

Once the host resumes the bus activity, it has to be responsive to incoming requests on the USB bus within the time T_{RSMRCY} (as defined in chapter 7 of the USB specification) and revert to normal power consumption mode.

If the host resumes bus activity with or without a RESUME condition (in other words: bus activity is defined as any non-J state), the USBD peripheral will generate a USBEVENT event, with RESUME bit set in register EVENTCAUSE. If the host resumes bus activity simply by restarting sending frames, the USBD peripheral will generate SOF events.

6.26.7.3 Device-initiated remote wake-up

Assuming the remote wake-up is supported by the device and enabled by the host, the device can request the host to resume from suspend if wake-up condition is met.

To do so, the HFXO needs to be enabled first. After waking up the HFXO, the software must bring USBD out of the low power mode and into the normal power consumption mode through writing ForceNormal in register LOWPOWER. It can then instruct the USBD peripheral to drive a RESUME condition (K state) on the USB bus by triggering the DPDMDRIVE task, and hence attempt to wake up the host. By choosing Resume in DPDMVALUE, the duration of the RESUME state is under hardware control (t_{USB,DRIVEK}). By choosing J or K, the duration of that state is under software control (the J or K state is maintained until a DPDMNODRIVE task is triggered) and has to meet T_{DRSMUP} as specified in USB specification chapter 7.

Upon writing the ForceNormal in register LOWPOWER, a USBEVENT event is generated with the USBWUALLOWED bit set in register EVENTCAUSE.

The value in register DPDMVALUE on page 407 will only be captured and used when the DPDMDRIVE task is triggered. This value defines the state the bus will be forced into after the DPDMDRIVE task.

Note that the device shall ensure that it does not initiate a remote wake-up request before T_{WTRSM} (according to USB specification chapter 7) after the bus has entered idle state. Using the recommended

resume value in DPDMVALUE (rather than K) takes care of this, and postpones the RESUME state accordingly.

6.26.8 EasyDMA

The USBD peripheral implements EasyDMA for accessing memory without CPU involvement.

Each endpoint has an associated set of registers, tasks and events. EasyDMA and traffic on USB are tightly related. A number of events provide insight of what is happening on the USB bus, and a number of tasks allow to somewhat automate response to the traffic.

Note: Endpoint 0 (IN and OUT) are implemented as control endpoint. For more information, see Control transfers on page 380.

Registers

Enabling endpoints is controlled through the EPINEN and EPOUTEN registers.

The following registers define the memory address of the buffer for a specific IN or OUT endpoint:

- EPIN[n].PTR, (n=0..7)
- EPOUT[n].PTR, (n=0..7)
- ISOIN.PTR
- ISOOUT.PTR

The following registers define the amount of bytes to be sent on USB for next transaction:

- EPIN[n].MAXCNT, (n=0..7)
- ISOIN.MAXCNT

The following registers define the length of the buffer (in bytes) for next transfer of incoming data:

- EPOUT[n].MAXCNT, (n=1..7)
- ISOOUT.MAXCNT

Since the host decides how many bytes are sent over USB, the MAXCNT value can be copied from register SIZE.EPOUT[n] (n=1..7) or register SIZE.ISOOUT.

Register EPOUT[0].MAXCNT defines the length of the OUT buffer (in bytes) for the control endpoint 0. If the USB host does not misbehave, register SIZE.EPOUT[0] will indicate the same value as MaxPacketSize from the device descriptor or wLength from the SETUP command, whichever the smallest.

The .AMOUNT registers indicate how many bytes actually have been transferred over EasyDMA during the last transfer.

Stalling bulk/interrupt endpoints is controlled through the EPSTALL register.

Note: Due to USB specification requirements, the effect of the stalling control endpoint 0 may be overridden by hardware, in particular when a new SETUP token is received.

EasyDMA will not copy the SETUP data to memory (it will only transfer data from the data stage). Setup data is available as separate registers in the USBD peripheral:

- BMREQUESTTYPE
- BREQUEST
- WVALUEL
- WVALUEH
- WINDEXL
- WINDEXH

- WLENGTHL
- WLENGTHH

EVENTCAUSE register provides details on what caused a given USBEVENT event, for instance if a CRC error is detected during a transaction, or if bus activity stops or resumes.

Tasks

Tasks STARTEPIN[n], STARTEPOUT[n] (n=0..7), STARTISOIN and STARTISOOUT capture the values for .PTR and .MAXCNT registers. For IN endpoints, a transaction over USB gets automatically triggered when the EasyDMA transfer is complete. For OUT endpoints, it is up to software to allow the next transaction over USB. See the examples in Control transfers on page 380, Bulk and interrupt transactions on page 383 and Isochronous transactions on page 386.

For the control endpoint 0, OUT transactions are allowed through the EPORCVOUT task. The EPOSTATUS task allows a status stage to be initiated, and the EPOSTALL task allows stalling further traffic (data or status stage) on the control endpoint.

Events

The STARTED event confirms that the values of the .PTR and .MAXCNT registers of the endpoints flagged in register EPSTATUS have been captured. Those can then be modified by software for the next transfer.

Events ENDEPIN[n], ENDEPOUT[n] (n=0..7), ENDISOIN and ENDISOOUT events indicate that the whole buffer has been consumed. The buffer can be accessed safely by the software.

Only a single EasyDMA transfer can take place in USBD at any time. Software must ensure that tasks STARTEPIN[n] (n=0..7), STARTISOIN, STARTEPOUT[n] (n=0..7) or STARTISOOUT are not triggered before events ENDEPIN[n] (n=0..7), ENDISOIN, ENDEPOUT[n] (n=0..7) or ENDISOOUT are received from an ongoing transfer.

The EPDATA event indicates that a successful (acknowledged) data transaction has occurred on the data endpoint(s) flagged in register EPDATASTATUS. A successful (acknowledged) data transaction on endpoint 0 is signalled by the EPODATADONE event.

At any time a USBEVENT event may be sent, with details provided in EVENTCAUSE register.

EPOSETUP event indicates that a SETUP token has been received on the control endpoint 0, and that the setup data is available in registers.

6.26.9 Control transfers

The USB specification mandates every USB device to implement endpoint 0 IN and OUT as control endpoints.

A control transfer consists of two or three stages:

- Setup stage
- Data stage (optional)
- Status stage

Each control transfer can be one of following types:

- Control read
- Control read no data
- Control write
- Control write no data

An EPOSETUP event indicates that the data in the setup stage (following the SETUP token) is available in registers.

The data in the data stage (following the IN or OUT token) is transferred from or to the desired location using EasyDMA.

The control endpoint buffer can be of any size.

After receiving the SETUP token, the USB controller will not accept (NAK) any incoming IN or OUT tokens until the software has finished decoding the command, determining the type of transfer, and preparing for the next stage (data or status) appropriately.

The software can choose to stall a command (in both data and status stages) through the EPOSTALL task, for instance if the command is not supported, or its wValue, wIndex or wLength parameters are wrong. A stalled control read transfer is illustrated below, but the same mechanism (same tasks) applies to stalling a control write transfer (not illustrated):

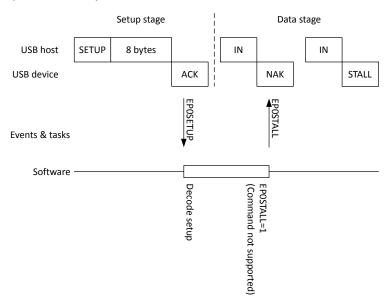


Figure 137: Control read gets stalled

See chapter 9 of the USB specification and relevant class specifications for rules on when to stall a command.

Note: The USBD peripheral handles the SetAddress transfer by itself. As a consequence, the software shall not process this command other than updating its state machine (see Device state diagram), nor initiate a status stage. If necessary, the address assigned by the host can be read out from the USBADDR register after the command has been processed.

6.26.9.1 Control read transfer

This section describes how the software behaves to respond to a control read transfer.

As mentioned earlier, the USB controller will not accept (NAK) any incoming IN tokens until software has finished decoding the command, determining the type of transfer, and preparing for the next stage (data or status) appropriately.

For a control read, transferring the data from memory into USBD will trigger a valid, acknowledged (ACK) IN transaction on USB.

The software has to prepare EasyDMA by pointing to the buffer containing the data to be transferred. If no other EasyDMA transfers are on-going with USBD, the software can send the STARTEPINO task, which will initiate the data transfer and transaction on USB.

A STARTED event (with EPINO bit set in the EPSTATUS register) will be generated as soon as the EPIN[0].PTR and .MAXCNT registers have been captured. Software may then prepare them for the next data transaction.

An ENDEPIN[0] event will be generated when the data has been transferred from memory to the USBD peripheral.

Finally, an EPODATADONE event will be generated when the data has been transmitted over USB and acknowledged by the host.

The software can then either prepare and transmit the next data transaction by repeating the above sequence, or initiate the status stage through the EPOSTATUS task.

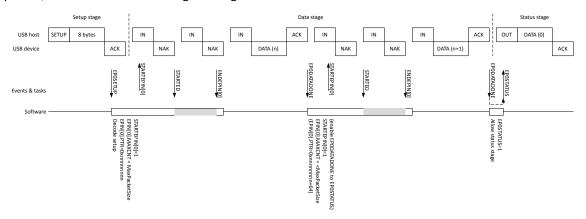


Figure 138: Control read transfer

Note the possibility to enable a shortcut from the EPODATADONE event to the EPOSTATUS task, typically if the data stage is expected to take a single transfer. If there is no data stage, the software can initiate the status stage through the EPOSTATUS task right away, as illustrated below:

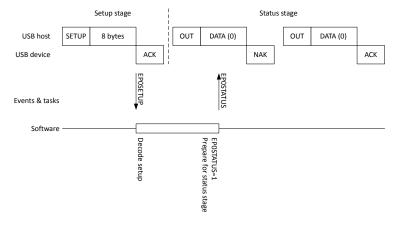


Figure 139: Control read no data transfer

6.26.9.2 Control write transfer

This section describes how the software responds to a control write transfer.

The software has to prepare EasyDMA by pointing to the buffer in memory that shall contain the incoming data. If no other EasyDMA transfers are on-going with USBD, the software can then send the EPORCVOUT task, which will make USBD acknowledge (ACK) the first OUT+DATA transaction from the host.

An EPODATADONE event will be generated when a new OUT+DATA has been transmitted over USB, and is about to get acknowledged by the device.

A STARTED event (with EPOUT0 bit set in the EPSTATUS register) will be generated as soon as the EPOUT[0].PTR and .MAXCNT registers have been captured, after receiving the first transaction. Software may then prepare them for the next data transaction.

An ENDEPOUT[0] event will be generated when the data has been transferred from the USBD peripheral to memory. The software can then either prepare to receive the next data transaction by repeating the above sequence, or initiate the status stage through the EPOSTATUS task. Until then, further incoming OUT +DATA transactions get a NAK response by the device.

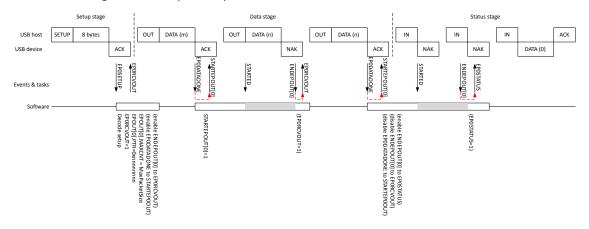


Figure 140: Control write transfer

Figure 141: Control write no data transfer

6.26.10 Bulk and interrupt transactions

The USBD peripheral implements seven pairs of bulk/interrupt endpoints.

The bulk/interrupt endpoints have a fixed USB endpoint number, summarized in the table below.

Bulk endpoint #	USB IN endpoint	USB OUT endpoint
[1]	0x81	0x01
[2]	0x82	0x02
[3]	0x83	0x03
[4]	0x84	0x04
[5]	0x85	0x05
[6]	0x86	0x06
[7]	0x87	0x07

Table 108: Bulk/interrupt endpoint numbering

A bulk/interrupt transaction consists of a single data stage. Two consecutive, successful transactions are distinguished through alternating leading process ID (PID): DATA0 follows DATA1, DATA1 follows DATA0,

etc. A repeated transaction is detected by re-using the same PID as previous transaction, i.e DATA0 follows DATA0, or DATA1 follows DATA1.

The USBD controller automatically toggles DATAO/DATA1 PIDs for every bulk/interrupt transaction, and in general software does not need to care about it.

If an incoming data is corrupted (CRC does not match), the USBD controller automatically prevents DATAO/DATA1 from toggling, to request the host to resend the data.

In some specific cases, the software may want to force a data toggle (usually reset) on a specific IN endpoint, or force the expected toggle on an OUT endpoint, for instance as a consequence of the host issuing ClearFeature, SetInterface or selecting an alternate setting. Controlling the data toggle of data IN or OUT endpoint n (n=1..7) is done through register DTOGGLE.

The bulk/interrupt transaction in USB full-speed can be of any size up to 64 bytes, and it has to be a multiple of 4 bytes and 32-bit aligned in memory.

When the transaction is done over USB, an EPDATA event is generated. The hardware will then automatically respond with NAK to all incoming IN tokens until the software is ready to send more data and has finished configuring the EasyDMA, started it, and the whole buffer content has been moved to USB controller (signalled by the ENDEPIN[n] event).

Each IN or OUT data endpoint has to be explicitly enabled by software through register EPINEN or EPOUTEN, according to the configuration declared by the device and selected by the host through the **SetConfig** command.

A disabled data endpoint will not respond to any traffic from the host. An enabled data endpoint will normally respond NAK or ACK (depending on the readiness of the buffers), or STALL (if configured in register EPSTALL), in which case the endpoint is asked to halt). The halted (or not) state of a given endpoint can be read back from register HALTED.EPIN[n] or HALTED.EPOUT[n]. The format of the returned 16-bit value can be copied as is as response to a GetStatusEndpoint request from the host.

Note that enabling or disabling an endpoint will not change its halted state. However, a USB reset will disable and clear the halted state of all data endpoints.

The control endpoint 0 IN and OUT can also be enabled and/or halted using the same mechanisms, but due to USB specification, receiving a SETUP will override its state.

6.26.10.1 Bulk and interrupt IN transaction

The host issues IN tokens to receive bulk/interrupt data. In order to send data, the software has to enable the endpoint and prepare an EasyDMA transfer on the desired endpoint.

Bulk/interrupt IN endpoints are enabled or disabled through their respective INn bit (n=1..7) in EPINEN register.

It is also possible to stall or un-stall an endpoint through the EPSTALL register.

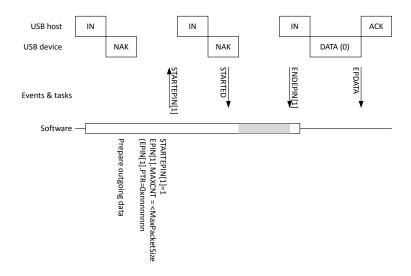


Figure 142: Bulk/interrupt IN transaction

It is possible (and in some situations it is required) to respond to an IN token with a zero-length data packet.

Note: On many USB hosts, not responding (DATA+ACK or NAK) to three IN tokens on an interrupt endpoint would have the host disable that endpoint as a consequence. Re-enumerating the device (unplug-replug) may be required to restore functionality. Make sure that the relevant data endpoints are enabled for normal operation as soon as the device gets configured through a **SetConfig** request.

6.26.10.2 Bulk and interrupt OUT transaction

When the host wants to transmit bulk/interrupt data, it issues an OUT token (packet) followed by a DATA packet on a given endpoint n (n=1..7).

A NAK is returned until the software writes any value to register SIZE.EPOUT[n], indicating that the content of the local buffer can be overwritten. Upon receiving the next OUT+DATA transaction, an ACK is returned to the host while an EPDATA event is generated (and the EPDATASTATUS register flags are set to indicate on which endpoint this happened). Once the EasyDMA is prepared and enabled, by writing the EPOUT[n] registers and triggering the STARTEPOUT[n] task, the incoming data will be transferred to memory. Until that transfer is finished, the hardware will automatically NAK any other incoming OUT+DATA packets. Only when the EasyDMA transfer is done (signalled by the ENDEPOUT[n] event), or as soon as any values are written by the software in register SIZE.EPOUT[n], the endpoint n will accept incoming OUT+DATA again.

It is allowed for the host to send zero-length data packets.

Bulk/interrupt OUT endpoints are enabled or disabled through their respective OUTn bit (n=1..7) in the EPOUTEN register. It is also possible to stall or un-stall an endpoint through the EPSTALL register.

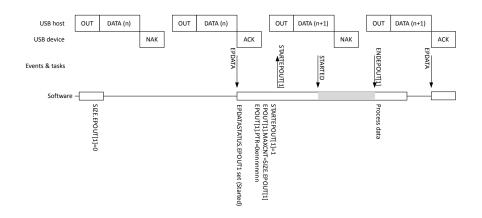


Figure 143: Bulk/interrupt OUT transaction

6.26.11 Isochronous transactions

The USBD peripheral implements isochronous (ISO) endpoints.

The ISO endpoints have a fixed USB endpoint number, summarized in the table below.

ISO endpoint #	USB IN endpoint	USB OUT endpoint
[0]	0x88	0x08

Table 109: Isochronous endpoint numbering

An isochronous transaction consists of a single, non-acknowledged data stage. The host sends out a start of frame at a regular interval (1 ms), and data follows IN or OUT tokens within each frame.

EasyDMA allows transferring ISO data directly from and to memory. EasyDMA transfers must be initiated by the software, which can synchronize with the SOF (start of frame) events.

Because the timing of the start of frame is very accurate, the SOF event can be used for instance to synchronize a local timer through the SOF event and PPI. The SOF event gets synchronized to the 16 MHz clock prior to being made available to the PPI.

Every start of frame increments a free-running counter, which can be read by software through the FRAMECNTR register.

Each IN or OUT ISO data endpoint has to be explicitly enabled by software through register EPINEN or EPOUTEN, according to the configuration declared by the device and selected by the host through the SetConfig command. A disabled ISO IN data endpoint will not respond to any traffic from the host. A disabled ISO OUT data endpoint will ignore any incoming traffic from the host.

The USBD peripheral has an internal 1 kB buffer associated with ISO endpoints. The user can either allocate the full amount to the IN or the OUT endpoint, or split the buffer allocation between the two using register ISOSPLIT.

The internal buffer also sets the maximum size of the ISO OUT and ISO IN transfers: 1023 bytes when the full buffer is dedicated to either ISO OUT or ISO IN, and half when the buffer is split between the two.

6.26.11.1 Isochronous IN transaction

When the host wants to receive isochronous (ISO) data, it issues an IN token on the isochronous endpoint.

After the data has been transferred using the EasyDMA, the USB controller on the isochronous IN endpoint responds to the IN token with the transferred data using the ISOIN.MAXCNT for the size of the packet.

The ISO IN data endpoint has to be explicitly enabled by software through the ISOINO bit in register EPINEN.

When an ISO IN endpoint is enabled and no data transferred with EasyDMA, the response of the USBD depends on the setting of the RESPONSE field in register ISOINCONFIG - it can either provide no response to an IN token or respond with a zero-length data.

If the EasyDMA transfer on the isochronous endpoint is not completed before the next SOF event, the result of the transfer is undefined.

The maximum size of an ISO IN transfer in USB full-speed is 1023 bytes, and the data buffer has to be a multiple of 4 bytes 32-bit aligned in memory. However, the amount of bytes transferred on the USB data endpoint can be of any size (up to 1023 bytes, if not shared with an OUT ISO endpoint).

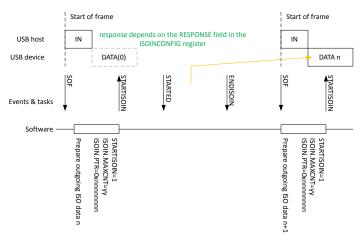


Figure 144: Isochronous IN transfer

6.26.11.2 Isochronous OUT transaction

When the host wants to send isochronous (ISO) data, it issues an OUT token on the isochronous endpoint, followed by data.

The ISO OUT data endpoint has to be explicitly enabled by software through the ISOOUT0 bit in register EPOUTEN.

The amount of last received ISO OUT data is provided in the SIZE.ISOOUT register. Software shall interpret the ZERO and SIZE fields as follows:

ZERO	SIZE	Last received data size
Normal	0	No data received at all
Normal	11023	11023 bytes of data received
ZeroData	(not of interest)	Zero-length data packet received

Table 110: ISO OUT incoming data size

When EasyDMA is prepared and started, triggering a STARTISOOUT task initiates an EasyDMA transfer to memory. Software shall synchronize ISO OUT transfers with the SOF events. EasyDMA uses the address in ISOOUT.PTR and size in ISOOUT.MAXCNT for every new transfer.

If the EasyDMA transfer on the isochronous endpoint is not completed before the next SOF event, the result of the transfer is undefined.

The maximum size of an isochronous OUT transfer in USB full-speed is 1023 bytes, and the data buffer has to be a multiple of 4 bytes and 32-bit aligned in Data RAM. However, the amount of bytes transferred on the USB data endpoint can be of any size (up to 1023 bytes if not shared with an IN ISO endpoint).

If the last received ISO data packet is corrupted (wrong CRC), the USB controller generates an USBEVENT event (at the same time as SOF) and indicates a CRC error on ISOOUTCRC in register EVENTCAUSE. EasyDMA will transfer the data anyway if it has been set up properly.

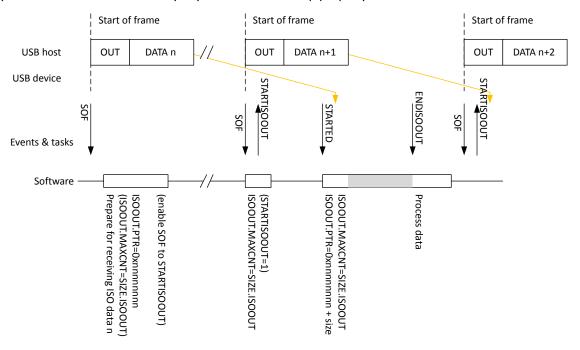


Figure 145: Isochronous OUT transfer

6.26.12 USB register access limitations

Some of the registers in USBD cannot be accessed in specific conditions.

This may be the case when USBD is not enabled (using the ENABLE register) and ready (signalled by the READY bit in EVENTCAUSE after a USBEVENT event), or when USBD is in low power mode while the USB bus is suspended.

Triggering any tasks, including the tasks triggered through the PPI, is affected by this behavior. In addition, the following registers are affected:

- HALTED.EPIN[0..7]
- HALTED.EPOUT[0..7]
- USBADDR
- BMREQUESTTYPE
- BREQUEST
- WVALUEL
- WVALUEH
- WINDEXL
- WINDEXH
- WLENGTHL
- WLENGTHH
- SIZE.EPOUT[0..7]
- SIZE.ISOOUT
- USBPULLUP
- DTOGGLE

- EPINEN
- EPOUTEN
- EPSTALL
- ISOSPLIT
- FRAMECNTR

6.26.13 Registers

Base address	Peripheral	Instance	Description	Configuration		
0x40027000	USBD	USBD	Universal serial bus device			

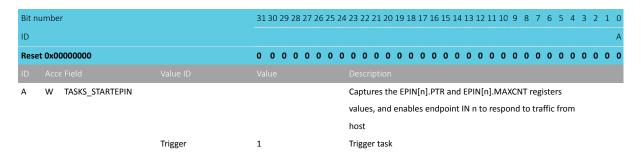
Table 111: Instances

Register	Offset	Description
TASKS_STARTEPIN[0]	0x004	Captures the EPIN[0].PTR and EPIN[0].MAXCNT registers values, and enables endpoint IN 0 to
		respond to traffic from host
TASKS_STARTEPIN[1]	0x008	Captures the EPIN[1].PTR and EPIN[1].MAXCNT registers values, and enables endpoint IN 1 to
		respond to traffic from host
TASKS_STARTEPIN[2]	0x00C	Captures the EPIN[2].PTR and EPIN[2].MAXCNT registers values, and enables endpoint IN 2 to
		respond to traffic from host
TASKS_STARTEPIN[3]	0x010	Captures the EPIN[3].PTR and EPIN[3].MAXCNT registers values, and enables endpoint IN 3 to
		respond to traffic from host
TASKS_STARTEPIN[4]	0x014	Captures the EPIN[4].PTR and EPIN[4].MAXCNT registers values, and enables endpoint IN 4 to
		respond to traffic from host
TASKS_STARTEPIN[5]	0x018	Captures the EPIN[5].PTR and EPIN[5].MAXCNT registers values, and enables endpoint IN 5 to
		respond to traffic from host
TASKS_STARTEPIN[6]	0x01C	Captures the EPIN[6].PTR and EPIN[6].MAXCNT registers values, and enables endpoint IN 6 to
		respond to traffic from host
TASKS_STARTEPIN[7]	0x020	Captures the EPIN[7].PTR and EPIN[7].MAXCNT registers values, and enables endpoint IN 7 to
		respond to traffic from host
TASKS_STARTISOIN	0x024	Captures the ISOIN.PTR and ISOIN.MAXCNT registers values, and enables sending data on ISO
		endpoint
TASKS_STARTEPOUT[0]	0x028	Captures the EPOUT[0].PTR and EPOUT[0].MAXCNT registers values, and enables endpoint 0 to
		respond to traffic from host
TASKS_STARTEPOUT[1]	0x02C	Captures the EPOUT[1].PTR and EPOUT[1].MAXCNT registers values, and enables endpoint 1 to
		respond to traffic from host
TASKS_STARTEPOUT[2]	0x030	Captures the EPOUT[2].PTR and EPOUT[2].MAXCNT registers values, and enables endpoint 2 to
		respond to traffic from host
TASKS_STARTEPOUT[3]	0x034	Captures the EPOUT[3].PTR and EPOUT[3].MAXCNT registers values, and enables endpoint 3 to
		respond to traffic from host
TASKS_STARTEPOUT[4]	0x038	Captures the EPOUT[4].PTR and EPOUT[4].MAXCNT registers values, and enables endpoint 4 to
		respond to traffic from host
TASKS_STARTEPOUT[5]	0x03C	Captures the EPOUT[5].PTR and EPOUT[5].MAXCNT registers values, and enables endpoint 5 to
		respond to traffic from host
TASKS_STARTEPOUT[6]	0x040	Captures the EPOUT[6].PTR and EPOUT[6].MAXCNT registers values, and enables endpoint 6 to
		respond to traffic from host
TASKS_STARTEPOUT[7]	0x044	Captures the EPOUT[7].PTR and EPOUT[7].MAXCNT registers values, and enables endpoint 7 to
TACKS STARTISS SUIT	0.043	respond to traffic from host
TASKS_STARTISOOUT	0x048	Captures the ISOOUT.PTR and ISOOUT.MAXCNT registers values, and enables receiving of data
TACKS EDODG 121 T	0.045	on ISO endpoint
TASKS_EPORCVOUT	0x04C	Allows OUT data stage on control endpoint 0
TASKS_EPOSTATUS	0x050	Allows status stage on control endpoint 0
TASKS_EPOSTALL	0x054	Stalls data and status stage on control endpoint 0

Register	Offset	Description
TASKS_DPDMDRIVE	0x058	Forces D+ and D- lines into the state defined in the DPDMVALUE register
TASKS_DPDMNODRIVE	0x05C	Stops forcing D+ and D- lines into any state (USB engine takes control)
EVENTS_USBRESET	0x100	Signals that a USB reset condition has been detected on USB lines
EVENTS_STARTED	0x104	Confirms that the EPIN[n].PTR and EPIN[n].MAXCNT, or EPOUT[n].PTR and EPOUT[n].MAXCNT
		registers have been captured on all endpoints reported in the EPSTATUS register
EVENTS_ENDEPIN[0]	0x108	The whole EPIN[0] buffer has been consumed. The buffer can be accessed safely by software.
EVENTS_ENDEPIN[1]	0x10C	The whole EPIN[1] buffer has been consumed. The buffer can be accessed safely by software.
EVENTS_ENDEPIN[2]	0x110	The whole EPIN[2] buffer has been consumed. The buffer can be accessed safely by software.
EVENTS_ENDEPIN[3]	0x114	The whole EPIN[3] buffer has been consumed. The buffer can be accessed safely by software.
EVENTS_ENDEPIN[4]	0x118	The whole EPIN[4] buffer has been consumed. The buffer can be accessed safely by software.
EVENTS_ENDEPIN[5]	0x11C	The whole EPIN[5] buffer has been consumed. The buffer can be accessed safely by software.
EVENTS_ENDEPIN[6]	0x120	The whole EPIN[6] buffer has been consumed. The buffer can be accessed safely by software.
EVENTS_ENDEPIN[7]	0x124	The whole EPIN[7] buffer has been consumed. The buffer can be accessed safely by software.
EVENTS_EPODATADONE	0x128	An acknowledged data transfer has taken place on the control endpoint
EVENTS_ENDISOIN	0x12C	The whole ISOIN buffer has been consumed. The buffer can be accessed safely by software.
EVENTS_ENDEPOUT[0]	0x130	The whole EPOUT[0] buffer has been consumed. The buffer can be accessed safely by
		software.
EVENTS_ENDEPOUT[1]	0x134	The whole EPOUT[1] buffer has been consumed. The buffer can be accessed safely by
_		software.
EVENTS_ENDEPOUT[2]	0x138	The whole EPOUT[2] buffer has been consumed. The buffer can be accessed safely by
		software.
EVENTS_ENDEPOUT[3]	0x13C	The whole EPOUT[3] buffer has been consumed. The buffer can be accessed safely by
		software.
EVENTS_ENDEPOUT[4]	0x140	The whole EPOUT[4] buffer has been consumed. The buffer can be accessed safely by
		software.
EVENTS_ENDEPOUT[5]	0x144	The whole EPOUT[5] buffer has been consumed. The buffer can be accessed safely by
		software.
EVENTS_ENDEPOUT[6]	0x148	The whole EPOUT[6] buffer has been consumed. The buffer can be accessed safely by
		software.
EVENTS_ENDEPOUT[7]	0x14C	The whole EPOUT[7] buffer has been consumed. The buffer can be accessed safely by
		software.
EVENTS_ENDISOOUT	0x150	The whole ISOOUT buffer has been consumed. The buffer can be accessed safely by software.
EVENTS_SOF	0x154	Signals that a SOF (start of frame) condition has been detected on USB lines
EVENTS_USBEVENT	0x158	An event or an error not covered by specific events has occurred. Check EVENTCAUSE register
		to find the cause.
EVENTS_EPOSETUP	0x15C	A valid SETUP token has been received (and acknowledged) on the control endpoint
EVENTS_EPDATA	0x160	A data transfer has occurred on a data endpoint, indicated by the EPDATASTATUS register
SHORTS	0x200	Shortcuts between local events and tasks
INTEN	0x300	Enable or disable interrupt
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt
EVENTCAUSE	0x400	Details on what caused the USBEVENT event
HALTED.EPIN[0]	0x420	IN endpoint halted status. Can be used as is as response to a GetStatus() request to endpoint.
HALTED.EPIN[1]	0x424	IN endpoint halted status. Can be used as is as response to a GetStatus() request to endpoint.
HALTED.EPIN[2]	0x428	IN endpoint halted status. Can be used as is as response to a GetStatus() request to endpoint.
HALTED.EPIN[3]	0x42C	IN endpoint halted status. Can be used as is as response to a GetStatus() request to endpoint.
HALTED.EPIN[4]	0x430	IN endpoint halted status. Can be used as is as response to a GetStatus() request to endpoint.
HALTED.EPIN[5]	0x434	IN endpoint halted status. Can be used as is as response to a GetStatus() request to endpoint.
HALTED.EPIN[6]	0x438	IN endpoint halted status. Can be used as is as response to a GetStatus() request to endpoint.
HALTED.EPIN[7]	0x43C	IN endpoint halted status. Can be used as is as response to a GetStatus() request to endpoint.
HALTED.EPOUT[0]	0x444	OUT endpoint halted status. Can be used as is as response to a GetStatus() request to
		endpoint.

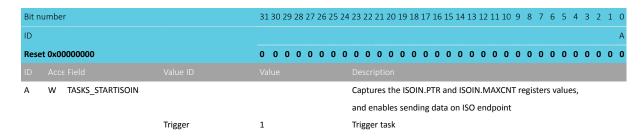
Register	Offset	Description
HALTED.EPOUT[1]	0x448	OUT endpoint halted status. Can be used as is as response to a GetStatus() request to
		endpoint.
HALTED.EPOUT[2]	0x44C	OUT endpoint halted status. Can be used as is as response to a GetStatus() request to
		endpoint.
HALTED.EPOUT[3]	0x450	OUT endpoint halted status. Can be used as is as response to a GetStatus() request to
		endpoint.
HALTED.EPOUT[4]	0x454	OUT endpoint halted status. Can be used as is as response to a GetStatus() request to
		endpoint.
HALTED.EPOUT[5]	0x458	OUT endpoint halted status. Can be used as is as response to a GetStatus() request to
		endpoint.
HALTED.EPOUT[6]	0x45C	OUT endpoint halted status. Can be used as is as response to a GetStatus() request to
		endpoint.
HALTED.EPOUT[7]	0x460	OUT endpoint halted status. Can be used as is as response to a GetStatus() request to
		endpoint.
EPSTATUS	0x468	Provides information on which endpoint's EasyDMA registers have been captured
EPDATASTATUS	0x46C	Provides information on which endpoint(s) an acknowledged data transfer has occurred
		(EPDATA event)
USBADDR	0x470	Device USB address
BMREQUESTTYPE	0x480	SETUP data, byte 0, bmRequestType
BREQUEST	0x484	SETUP data, byte 1, bRequest
WVALUEL	0x488	SETUP data, byte 2, LSB of wValue
WVALUEH	0x48C	SETUP data, byte 3, MSB of wValue
WINDEXL	0x490	SETUP data, byte 4, LSB of windex
WINDEXH	0x494	SETUP data, byte 5, MSB of windex
WLENGTHL	0x498	SETUP data, byte 6, LSB of wLength
WLENGTHH	0x49C	SETUP data, byte 7, MSB of wLength
SIZE.EPOUT[0]	0x4A0	Number of bytes received last in the data stage of this OUT endpoint
SIZE.EPOUT[1]	0x4A4	Number of bytes received last in the data stage of this OUT endpoint
SIZE.EPOUT[2]	0x4A8	Number of bytes received last in the data stage of this OUT endpoint
SIZE.EPOUT[3]	0x4AC	Number of bytes received last in the data stage of this OUT endpoint
SIZE.EPOUT[4]	0x4B0	Number of bytes received last in the data stage of this OUT endpoint
SIZE.EPOUT[5]	0x4B4	Number of bytes received last in the data stage of this OUT endpoint
SIZE.EPOUT[6]	0x4B8	Number of bytes received last in the data stage of this OUT endpoint
SIZE.EPOUT[7]	0x4BC	Number of bytes received last in the data stage of this OUT endpoint
SIZE.ISOOUT	0x4C0	Number of bytes received last on this ISO OUT data endpoint
ENABLE	0x500	Enable USB
USBPULLUP	0x504	Control of the USB pull-up
DPDMVALUE	0x508	State D+ and D- lines will be forced into by the DPDMDRIVE task. The DPDMNODRIVE task
		reverts the control of the lines to MAC IP (no forcing).
DTOGGLE	0x50C	Data toggle control and status
EPINEN	0x510	Endpoint IN enable
EPOUTEN	0x514	Endpoint OUT enable
EPSTALL	0x518	STALL endpoints
ISOSPLIT	0x51C	Controls the split of ISO buffers
FRAMECNTR	0x520	Returns the current value of the start of frame counter
LOWPOWER	0x52C	Controls USBD peripheral low power mode during USB suspend
ISOINCONFIG	0x530	Controls the response of the ISO IN endpoint to an IN token when no data is ready to be sent
EPIN[0].PTR	0x600	Data pointer
EPIN[0].MAXCNT	0x604	Maximum number of bytes to transfer
EPIN[0].AMOUNT	0x608	Number of bytes transferred in the last transaction
EPIN[1].PTR	0x614	Data pointer
EPIN[1].MAXCNT	0x618	Maximum number of bytes to transfer
EPIN[1].AMOUNT	0x61C	Number of bytes transferred in the last transaction

Register	Offset	Description
EPIN[2].PTR	0x628	Data pointer
EPIN[2].MAXCNT	0x62C	Maximum number of bytes to transfer
EPIN[2].AMOUNT	0x630	Number of bytes transferred in the last transaction
EPIN[3].PTR	0x63C	Data pointer
EPIN[3].MAXCNT	0x640	Maximum number of bytes to transfer
EPIN[3].AMOUNT	0x644	Number of bytes transferred in the last transaction
EPIN[4].PTR	0x650	Data pointer
EPIN[4].MAXCNT	0x654	Maximum number of bytes to transfer
EPIN[4].AMOUNT	0x658	Number of bytes transferred in the last transaction
EPIN[5].PTR	0x664	Data pointer
EPIN[5].MAXCNT	0x668	Maximum number of bytes to transfer
EPIN[5].AMOUNT	0x66C	Number of bytes transferred in the last transaction
EPIN[6].PTR	0x678	Data pointer
EPIN[6].MAXCNT	0x67C	Maximum number of bytes to transfer
EPIN[6].AMOUNT	0x680	Number of bytes transferred in the last transaction
EPIN[7].PTR	0x68C	Data pointer
EPIN[7].MAXCNT	0x690	Maximum number of bytes to transfer
EPIN[7].AMOUNT	0x694	Number of bytes transferred in the last transaction
ISOIN.PTR	0x6A0	Data pointer
ISOIN.MAXCNT	0x6A4	Maximum number of bytes to transfer
ISOIN.AMOUNT	0x6A8	Number of bytes transferred in the last transaction
EPOUT[0].PTR	0x700	Data pointer
EPOUT[0].MAXCNT	0x704	Maximum number of bytes to transfer
EPOUT[0].AMOUNT	0x708	Number of bytes transferred in the last transaction
EPOUT[1].PTR	0x714	Data pointer
EPOUT[1].MAXCNT	0x718	Maximum number of bytes to transfer
EPOUT[1].AMOUNT	0x71C	Number of bytes transferred in the last transaction
EPOUT[2].PTR	0x728	Data pointer
EPOUT[2].MAXCNT	0x72C	Maximum number of bytes to transfer
EPOUT[2].AMOUNT	0x730	Number of bytes transferred in the last transaction
EPOUT[3].PTR	0x73C	Data pointer
EPOUT[3].MAXCNT	0x740	Maximum number of bytes to transfer
EPOUT[3].AMOUNT	0x744	Number of bytes transferred in the last transaction
EPOUT[4].PTR	0x750	Data pointer
EPOUT[4].MAXCNT	0x754	Maximum number of bytes to transfer
EPOUT[4].AMOUNT	0x758	Number of bytes transferred in the last transaction
EPOUT[5].PTR	0x764	Data pointer
EPOUT[5].MAXCNT	0x768	Maximum number of bytes to transfer
EPOUT[5].AMOUNT	0x76C	Number of bytes transferred in the last transaction
EPOUT[6].PTR	0x778	Data pointer
EPOUT[6].MAXCNT	0x77C	Maximum number of bytes to transfer
EPOUT[6].AMOUNT	0x780	Number of bytes transferred in the last transaction
EPOUT[7].PTR	0x78C	Data pointer
EPOUT[7].MAXCNT	0x790	Maximum number of bytes to transfer
EPOUT[7].AMOUNT	0x794	Number of bytes transferred in the last transaction
ISOOUT.PTR	0x7A0	Data pointer
ISOOUT.MAXCNT	0x7A4	Maximum number of bytes to transfer
ISOOUT.AMOUNT	0x7A8	Number of bytes transferred in the last transaction


Table 112: Register overview

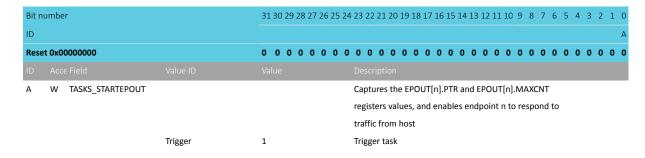
6.26.13.1 TASKS_STARTEPIN[n] (n=0..7)

Address offset: $0x004 + (n \times 0x4)$


Captures the EPIN[n].PTR and EPIN[n].MAXCNT registers values, and enables endpoint IN n to respond to traffic from host

6.26.13.2 TASKS STARTISOIN

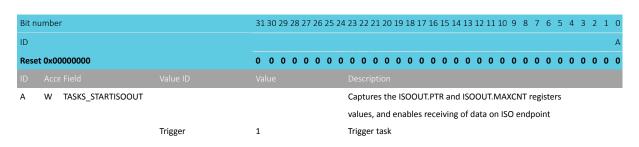
Address offset: 0x024


Captures the ISOIN.PTR and ISOIN.MAXCNT registers values, and enables sending data on ISO endpoint

6.26.13.3 TASKS STARTEPOUT[n] (n=0..7)

Address offset: $0x028 + (n \times 0x4)$

Captures the EPOUT[n].PTR and EPOUT[n].MAXCNT registers values, and enables endpoint n to respond to traffic from host


6.26.13.4 TASKS_STARTISOOUT

Address offset: 0x048

4463 014 v0.7

Captures the ISOOUT.PTR and ISOOUT.MAXCNT registers values, and enables receiving of data on ISO endpoint

6.26.13.5 TASKS_EPORCVOUT

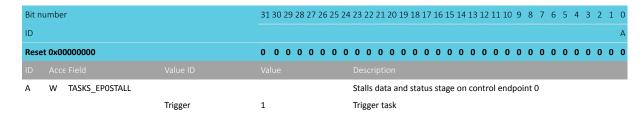
Address offset: 0x04C

Allows OUT data stage on control endpoint 0

Bit n	umber		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	W TASKS_EPORCVOUT			Allows OUT data stage on control endpoint 0
		Trigger	1	Trigger task

6.26.13.6 TASKS_EPOSTATUS

Address offset: 0x050


Allows status stage on control endpoint 0

Bit n	umber		31 30 2	29 28 2	7 26	25 2	4 23	22	21 2	0 19	9 18	17 :	16 1	5 14	113	12 1	1 10	9	8 7	6	5	4	3	2 1	0
ID																									Α
Rese	et 0x00000000		0 0	0 0	0 0	0 0	0	0	0 (0 0	0	0	0 0	0	0	0 (0	0	0 0	0	0	0	0 (0 0	0
ID																									
Α	W TASKS_EPOSTATUS						Αl	low	s sta	tus	stage	e on	con	itro	l en	dpoi	nt 0								
		Trigger	1				Tri	igge	r tas	sk															

6.26.13.7 TASKS_EPOSTALL

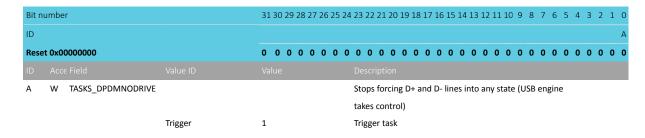
Address offset: 0x054

Stalls data and status stage on control endpoint 0

6.26.13.8 TASKS DPDMDRIVE

Address offset: 0x058

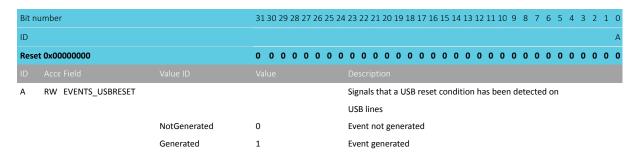
Forces D+ and D- lines into the state defined in the DPDMVALUE register



Bit number		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			А
Reset 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A W TASKS_DPDMDRIVE			Forces D+ and D- lines into the state defined in the
			DPDMVALUE register
	Trigger	1	Trigger task

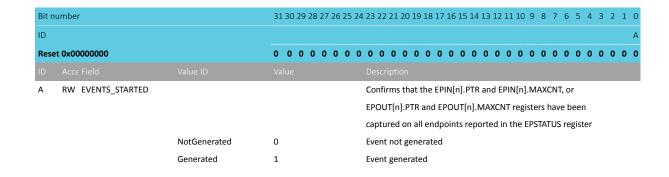
6.26.13.9 TASKS DPDMNODRIVE

Address offset: 0x05C


Stops forcing D+ and D- lines into any state (USB engine takes control)

6.26.13.10 EVENTS_USBRESET

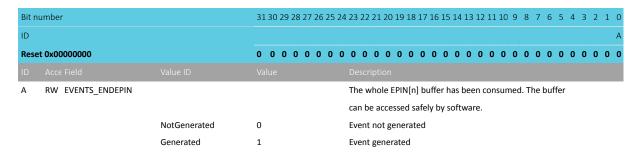
Address offset: 0x100


Signals that a USB reset condition has been detected on USB lines

6.26.13.11 EVENTS STARTED

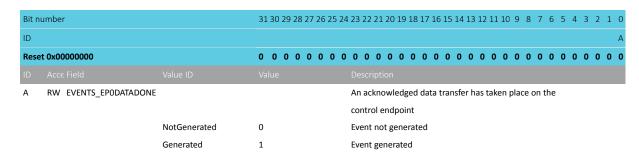
Address offset: 0x104

Confirms that the EPIN[n].PTR and EPIN[n].MAXCNT, or EPOUT[n].PTR and EPOUT[n].MAXCNT registers have been captured on all endpoints reported in the EPSTATUS register



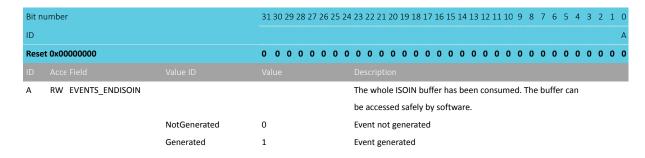
6.26.13.12 EVENTS_ENDEPIN[n] (n=0..7)

Address offset: $0x108 + (n \times 0x4)$


The whole EPIN[n] buffer has been consumed. The buffer can be accessed safely by software.

6.26.13.13 EVENTS_EPODATADONE

Address offset: 0x128


An acknowledged data transfer has taken place on the control endpoint

6.26.13.14 EVENTS ENDISOIN

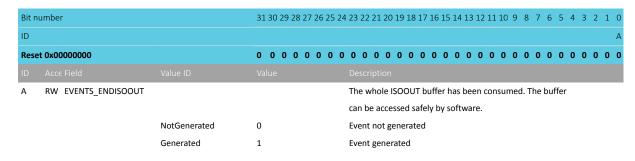
Address offset: 0x12C

The whole ISOIN buffer has been consumed. The buffer can be accessed safely by software.

6.26.13.15 EVENTS_ENDEPOUT[n] (n=0..7)

Address offset: $0x130 + (n \times 0x4)$

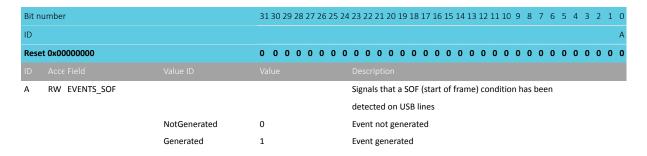
The whole EPOUT[n] buffer has been consumed. The buffer can be accessed safely by software.



Bit n	umber		31 30	29 2	28 27	⁷ 26	25	24 :	23 2	2 2:	1 20	19	18	17 :	16 1	5 1	4 13	3 12	11 1	10 9	8	7	6	5	4	3	2	1 0
ID																												А
Rese	t 0x00000000		0 0	0	0 0	0	0	0	0 0	0	0	0	0	0	0 (0	0	0	0	0 0	0	0	0	0	0	0	0	0 0
ID									Desc																			
Α	RW EVENTS_ENDEPOUT		The whole EPOUT[n] buffer has been consumed. The buffer											ffer														
								•	can l	be a	ассе	sse	d sa	ifely	/ by	sof	twa	re.										
		NotGenerated	0					-	Even	it n	ot g	ene	rate	ed														
		1					-	Even	it ge	ene	rate	d																

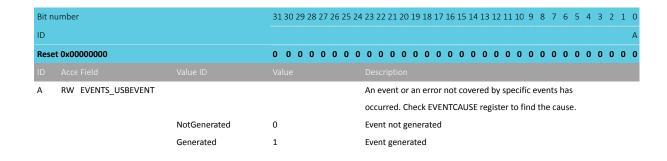
6.26.13.16 EVENTS_ENDISOOUT

Address offset: 0x150


The whole ISOOUT buffer has been consumed. The buffer can be accessed safely by software.

6.26.13.17 EVENTS SOF

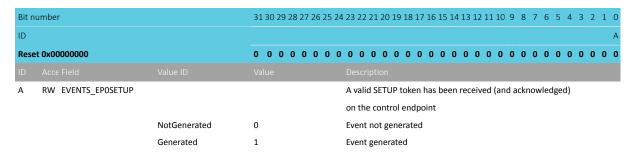
Address offset: 0x154


Signals that a SOF (start of frame) condition has been detected on USB lines

6.26.13.18 EVENTS_USBEVENT

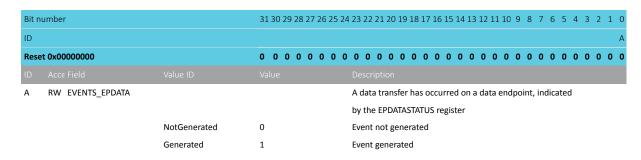
Address offset: 0x158

An event or an error not covered by specific events has occurred. Check EVENTCAUSE register to find the cause.



6.26.13.19 EVENTS_EPOSETUP

Address offset: 0x15C


A valid SETUP token has been received (and acknowledged) on the control endpoint

6.26.13.20 EVENTS_EPDATA

Address offset: 0x160

A data transfer has occurred on a data endpoint, indicated by the EPDATASTATUS register

6.26.13.21 SHORTS

Address offset: 0x200

Shortcuts between local events and tasks

Bit r	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0													
ID				E D C B A													
Res	et 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
ID																	
Α	RW EPODATADONE_STARTE	EPINO		Shortcut between event EPODATADONE and task													
				STARTEPIN[0]													
		Disabled	0	Disable shortcut													
		Enabled	1	Enable shortcut													
В	RW EPODATADONE_STARTE	P		Shortcut between event EPODATADONE and task													
	RW EPODATADONE_STARTEP			STARTEPOUT[0]													
		Disabled	0	Disable shortcut													
		Enabled	1	Enable shortcut													
С	RW EPODATADONE_EPOSTA	ATUS		Shortcut between event EPODATADONE and task EPOSTATUS													
		Disabled	0	Disable shortcut													
		Enabled	1	Enable shortcut													
D	RW ENDEPOUTO_EPOSTATU	JS		Shortcut between event ENDEPOUT[0] and task EPOSTATUS													
		Disabled	0	Disable shortcut													
		Enabled	1	Enable shortcut													
E	RW ENDEPOUTO_EPORCVO	UT		Shortcut between event ENDEPOUT[0] and task EPORCVOUT													

Bit number		31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			E D C B A
Reset 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
	Disabled	0	Disable shortcut
	Enabled	1	Enable shortcut

6.26.13.22 INTEN

Address offset: 0x300

Enable or disable interrupt

Rit n	umber		21 20 20 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	umber			
ID -				/ X W V U T S R Q P O N M L K J I H G F E D C B A
	et 0x00000000			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID	Acce Field	Value ID	Value	Description
Α	RW USBRESET			Enable or disable interrupt for event USBRESET
		Disabled	0	Disable
		Enabled	1	Enable
В	RW STARTED			Enable or disable interrupt for event STARTED
		Disabled	0	Disable
		Enabled	1	Enable
C-J	RW ENDEPIN[i] (i=07)			Enable or disable interrupt for event ENDEPIN[i]
		Disabled	0	Disable
		Enabled	1	Enable
K	RW EPODATADONE			Enable or disable interrupt for event EPODATADONE
		Disabled	0	Disable
		Enabled	1	Enable
L	RW ENDISOIN			Enable or disable interrupt for event ENDISOIN
		Disabled	0	Disable
		Enabled	1	Enable
M-T	RW ENDEPOUT[i] (i=07)			Enable or disable interrupt for event ENDEPOUT[i]
		Disabled	0	Disable
		Enabled	1	Enable
U	RW ENDISOOUT			Enable or disable interrupt for event ENDISOOUT
		Disabled	0	Disable
		Enabled	1	Enable
٧	RW SOF			Enable or disable interrupt for event SOF
		Disabled	0	Disable
		Enabled	1	Enable
W	RW USBEVENT			Enable or disable interrupt for event USBEVENT
		Disabled	0	Disable
		Enabled	1	Enable
Χ	RW EPOSETUP			Enable or disable interrupt for event EPOSETUP
		Disabled	0	Disable
		Enabled	1	Enable
Υ	RW EPDATA			Enable or disable interrupt for event EPDATA
		Disabled	0	Disable
		Enabled	1	Enable

6.26.13.23 INTENSET

Address offset: 0x304

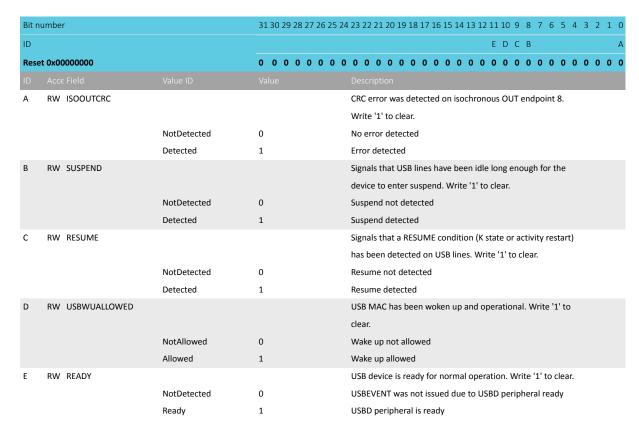
Enable interrupt

Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				/XWVUTSRQPONMLKJIHGFEDCBA
Rese	et 0x00000000			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
A	RW USBRESET			Write '1' to enable interrupt for event USBRESET
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
В	RW STARTED	Endored	-	Write '1' to enable interrupt for event STARTED
2	525	Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
C-J	RW ENDEPIN[i] (i=07)	Lilableu	1	Write '1' to enable interrupt for event ENDEPIN[i]
C-1	KW ENDERIN[I] (I-07)	Set	1	Enable
				Read: Disabled
		Disabled	0	
1/	DIAL EDODATADONE	Enabled	1	Read: Enabled
K	RW EPODATADONE	6.1		Write '1' to enable interrupt for event EPODATADONE
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
L	RW ENDISOIN			Write '1' to enable interrupt for event ENDISOIN
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
M-T	RW ENDEPOUT[i] (i=07)			Write '1' to enable interrupt for event ENDEPOUT[i]
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
U	RW ENDISOOUT			Write '1' to enable interrupt for event ENDISOOUT
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
V	RW SOF			Write '1' to enable interrupt for event SOF
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
W	RW USBEVENT			Write '1' to enable interrupt for event USBEVENT
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Χ	RW EPOSETUP			Write '1' to enable interrupt for event EPOSETUP
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Υ	RW EPDATA			Write '1' to enable interrupt for event EPDATA
		Set	1	Enable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

6.26.13.24 INTENCLR

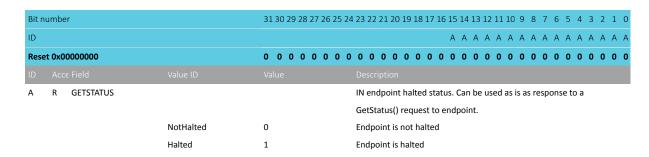
Address offset: 0x308

Disable interrupt


Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				/XWVUTSRQPONMLKJIHGFEDCBA
Rese	et 0x00000000			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
A	RW USBRESET			Write '1' to disable interrupt for event USBRESET
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
В	RW STARTED	Endored	-	Write '1' to disable interrupt for event STARTED
2	525	Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
C-J	RW ENDEPIN[i] (i=07)	Lilabieu	1	
C-1	KW ENDERIN[I] (I-07)	Clear	1	Write '1' to disable interrupt for event ENDEPIN[i] Disable
		Clear		
		Disabled	0	Read: Disabled
.,		Enabled	1	Read: Enabled
K	RW EPODATADONE			Write '1' to disable interrupt for event EPODATADONE
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
L	RW ENDISOIN			Write '1' to disable interrupt for event ENDISOIN
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
M-T	RW ENDEPOUT[i] (i=07)			Write '1' to disable interrupt for event ENDEPOUT[i]
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
U	RW ENDISOOUT			Write '1' to disable interrupt for event ENDISOOUT
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
V	RW SOF			Write '1' to disable interrupt for event SOF
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
W	RW USBEVENT			Write '1' to disable interrupt for event USBEVENT
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Х	RW EPOSETUP			Write '1' to disable interrupt for event EPOSETUP
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled
Υ	RW EPDATA			Write '1' to disable interrupt for event EPDATA
		Clear	1	Disable
		Disabled	0	Read: Disabled
		Enabled	1	Read: Enabled

6.26.13.25 EVENTCAUSE

Address offset: 0x400


Details on what caused the USBEVENT event

6.26.13.26 HALTED.EPIN[n] (n=0..7)

Address offset: $0x420 + (n \times 0x4)$

IN endpoint halted status. Can be used as is as response to a GetStatus() request to endpoint.

6.26.13.27 HALTED.EPOUT[n] (n=0..7)

Address offset: $0x444 + (n \times 0x4)$

OUT endpoint halted status. Can be used as is as response to a GetStatus() request to endpoint.

Bit number	31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		A A A A A A A A A A A A A A A A
Reset 0x00000000	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID		Description
A R GETSTATUS		OUT endpoint halted status. Can be used as is as response
		to a GetStatus() request to endpoint.
NotHalte	d 0	Endpoint is not halted
Halted	1	Endpoint is halted

6.26.13.28 EPSTATUS

Address offset: 0x468

Provides information on which endpoint's EasyDMA registers have been captured

Bit number	31	. 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		R	Q P O N M L K J I H G F E D C B A
Reset 0x00000000	0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Valu			Description
A-I RW EPIN[i] (i=08)			Captured state of endpoint's EasyDMA registers. Write '1' to
			clear.
Not	oata 0		EasyDMA registers have not been captured for this endpoint
Data	aDone 1		EasyDMA registers have been captured for this endpoint
J-R RW EPOUT[i] (i=08)			Captured state of endpoint's EasyDMA registers. Write '1' to
			clear.
Not	oata 0		EasyDMA registers have not been captured for this endpoint
Data	aDone 1		EasyDMA registers have been captured for this endpoint

6.26.13.29 EPDATASTATUS

Address offset: 0x46C

Provides information on which endpoint(s) an acknowledged data transfer has occurred (EPDATA event)

Bit num	her		31 30 29 28 27 26 25	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Dit Hulli				.5242522212015101710151415121110 5 6 7 0 5 4 5 2 1 0
ID				N M L K J I H G F E D C B A
Reset 0	x0000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID A				
A-G R	W EPIN[i] (i=17)			Acknowledged data transfer on this IN endpoint. Write '1' to
				clear.
		NotDone	0	No acknowledged data transfer on this endpoint
		DataDone	1	Acknowledged data transfer on this endpoint has occurred
H-N R	W EPOUT[i] (i=17)			Acknowledged data transfer on this OUT endpoint. Write '1'
				to clear.
		NotStarted	0	No acknowledged data transfer on this endpoint
		Started	1	Acknowledged data transfer on this endpoint has occurred

6.26.13.30 USBADDR

Address offset: 0x470 **Device USB address**

Bit number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ID Reset 0x000000000 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID A A A A A A A
Bit number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.26.13.31 BMREQUESTTYPE

Address offset: 0x480

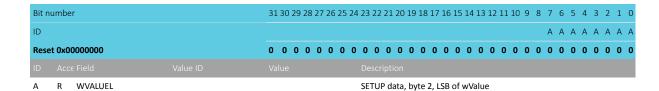
SETUP data, byte 0, bmRequestType

Bit n	umbe	er		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					СВВАААА
Rese	et OxO	0000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
Α	R	RECIPIENT			Data transfer type
			Device	0	Device
			Interface	1	Interface
			Endpoint	2	Endpoint
			Other	3	Other
В	R	TYPE			Data transfer type
			Standard	0	Standard
			Class	1	Class
			Vendor	2	Vendor
С	R	DIRECTION			Data transfer direction
			HostToDevice	0	Host-to-device
			DeviceToHost	1	Device-to-host

6.26.13.32 BREQUEST

Address offset: 0x484

SETUP data, byte 1, bRequest


									-		-		-	-		-	-	-		-	-	_		-	_		-	_
Bit n	umbe	r		313	0 29	28 2	7 26	25 24	4 23	3 22 :	21 2	0 19	18	17 1	6 1	5 14	13	12	11 1	0 9	8	7	6	5	4	3 2	2 1	. 0
ID																						Α	Α	Α	Α /	Α /	λ Α	A A
Rese	t OxO	0000000		0 (0 0	0 (0 0	0 0	0	0	0 (0 0	0	0 () (0 0	0	0	0 (0	0	0	0	0	0	0 () (0
ID																												
Α	R	BREQUEST							SE	ETUP	dat	a, by	yte :	1, bR	eq	uest	. Va	lues	s pro	vide	ed fo	or s	tan	dar	d			
									re	eque	sts c	only,	use	r mu	st i	mpl	eme	ent	class	and	d ve	ndo	or					
									va	alues	5.																	
			STD_GET_STATUS	0					St	tanda	ard i	requ	est	GET_	ST	ATU	S											
			STD_CLEAR_FEATURE	1					St	tanda	ard ı	requ	est	CLEA	R_	FEA	ΓUR	E										
			STD_SET_FEATURE	3					St	tanda	ard i	requ	est :	SET_	FE	ATUI	RE											
			STD_SET_ADDRESS	5					St	tanda	ard i	requ	est :	SET_	AD	DRE	SS											
			STD_GET_DESCRIPTOR	6					St	tanda	ard i	requ	est	GET_	DE	SCR	IPTO	OR										
			STD_SET_DESCRIPTOR	7					St	tanda	ard i	requ	est :	SET_	DE	SCR	PTC	R										
			STD_GET_CONFIGURAT	10 8 N					St	tanda	ard ı	requ	est	GET_	_cc	NFI	GUF	RATI	ION									
			STD_SET_CONFIGURATI	OB					St	tanda	ard i	requ	est :	SET_	со	NFI	GUR	ATI	ON									
			STD_GET_INTERFACE	10					St	tanda	ard ı	requ	est	GET_	IN	TER	ACE	E										
			STD_SET_INTERFACE	11					St	tanda	ard ı	requ	est :	SET_	IN	ERF	ACE											
			STD_SYNCH_FRAME	12					St	tanda	ard ı	requ	est :	SYNC	H_	FRA	ME											

6.26.13.33 WVALUEL

Address offset: 0x488

SETUP data, byte 2, LSB of wValue

6.26.13.34 WVALUEH

Address offset: 0x48C

SETUP data, byte 3, MSB of wValue

A R WVALUEH		SETUP data, b	yte 3, MSB	of wValue	2						
ID Acce Field											
Reset 0x00000000	0 0 0 0 0 0 0	000000	0000	0 0 0	0 0 0 0	0	0 0	0	0	0 0	0 0
ID							A A	A	Α	А А	A A
Bit number	31 30 29 28 27 26 25 2	24 23 22 21 20 1	9 18 17 16 1	5 14 13 1	12 11 10 9	8	7 6	5	4	3 2	1 0

6.26.13.35 WINDEXL

Address offset: 0x490

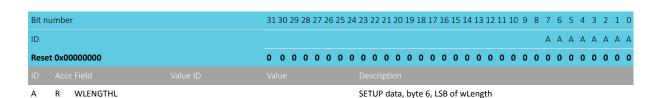
SETUP data, byte 4, LSB of wIndex

Α	R WINDEXL						S	ETU	P da	ta, b	yte 4	l, LS	B of	wIn	dex										
ID																									
Reset	0x00000000	0 0	0	0 (0 0	0 (0 (0	0	0 0	0	0 (0 0	0	0	0 0	0	0 0	0	0	0	0	0	0 0	0
ID																			Α	Α	Α	Α	Α .	ДД	A
Bit nui	mber	31 3	0 29	28 2	7 26	25 2	24 2	3 22	21	20 1	9 18	17 1	6 15	5 14	13 1	2 11	. 10	9 8	3 7	6	5	4	3	2 1	0

6.26.13.36 WINDEXH

Address offset: 0x494

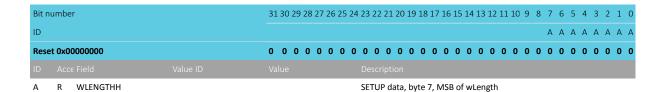
SETUP data, byte 5, MSB of windex


Bit nur	mber	31 30 2	29 28	3 27	26 2	5 24	23	22 2	21 20	0 19	18	17 1	6 15	5 14	13	12 1	1 10	9	8	7	6	5 4	4 3	2	1	0
ID																				Α	Α	Α /	4 Δ	A	Α	Α
Reset	0x0000000	0 0	0 0	0	0 (0	0	0	0 0	0	0	0 (0	0	0	0 (0	0	0	0	0	0 (0 0	0	0	0
ID																										
Α	R WINDEXH						SET	UP	data	a, by	/te 5	5, M	SB c	f wl	Inde	ex										

6.26.13.37 WLENGTHL

Address offset: 0x498

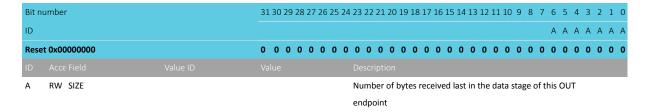
SETUP data, byte 6, LSB of wLength



6.26.13.38 WLENGTHH

Address offset: 0x49C

SETUP data, byte 7, MSB of wLength



6.26.13.39 SIZE.EPOUT[n] (n=0..7)

Address offset: $0x4A0 + (n \times 0x4)$

Number of bytes received last in the data stage of this OUT endpoint

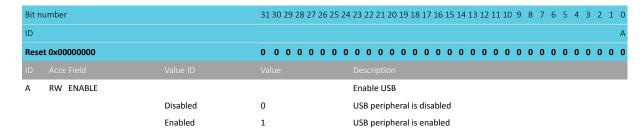
Write to any value to accept further OUT traffic on this endpoint, and overwrite the intermediate buffer

6.26.13.40 SIZE.ISOOUT

Address offset: 0x4C0

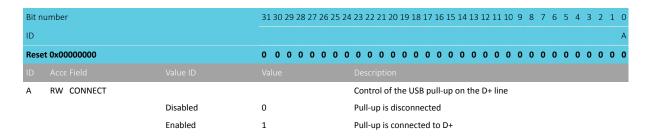
Number of bytes received last on this ISO OUT data endpoint

Bit n	umbe	er		31 30	0 29	28	27 :	26 2	25 2	24 2	23 2	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 0
ID																		В							Α	Α	Α	Α	Α	Α	Α.	Δ.	А А
Rese	t 0x0	0010000		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
ID											Des																						
Α	R	SIZE								-	Nur	mb	er	of I	byt	es i	rece	eive	ed I	ast	on	thi	s IS	0 0	TU	۲da	ita						
										•	end	lpo	oint																				
В	R	ZERO								2	Zero	o-le	en	gth	da	ta p	oac	ket	rec	eiv	ed												
			Normal	0						-	No :	zer	ro-	en	gth	da	ta r	ece	eive	d,	use	va	lue	in S	SIZI	E							
			ZeroData	1						7	Zero	o-le	en	gth	da	ta r	ece	ive	d, i	gno	ore	val	ue	in S	IZE								


6.26.13.41 ENABLE

Address offset: 0x500

Enable USB


After writing Disabled to this register, reading the register will return Enabled until USBD is completely disabled.

6.26.13.42 USBPULLUP

Address offset: 0x504

Control of the USB pull-up

6.26.13.43 DPDMVALUE

Address offset: 0x508

State D+ and D- lines will be forced into by the DPDMDRIVE task. The DPDMNODRIVE task reverts the control of the lines to MAC IP (no forcing).

6.26.13.44 DTOGGLE

Address offset: 0x50C

Data toggle control and status

Write this register first with VALUE=Nop to select the endpoint; then read it to get the status from VALUE, or write it again with VALUE=Data0 or Data1

Bit n	umber		31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				ССВ ААА
Rese	et 0x00000100		0 0 0 0 0 0	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$
ID				
Α	RW EP			Select bulk endpoint number
В	RW IO			Selects IN or OUT endpoint
		Out	0	Selects OUT endpoint
		In	1	Selects IN endpoint
С	RW VALUE			Data toggle value
		Nop	0	No action on data toggle when writing the register with this
				value
		Data0	1	Data toggle is DATAO on endpoint set by EP and IO
		Data1	2	Data toggle is DATA1 on endpoint set by EP and IO

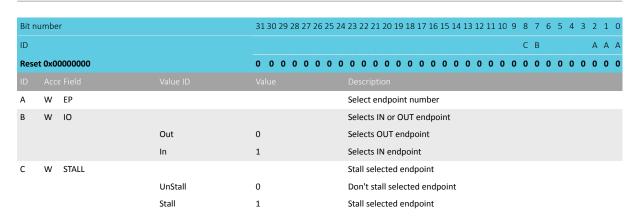
6.26.13.45 EPINEN

Address offset: 0x510 Endpoint IN enable

Bit number		31 30 29 28 27	7 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			IHGFEDCBA
Reset 0x00000001		0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			
A-H RW IN[i] (i=07)			Enable IN endpoint i
	Disable	0	Disable endpoint IN i (no response to IN tokens)
	Enable	1	Enable endpoint IN i (response to IN tokens)
I RW ISOIN			Enable ISO IN endpoint
	Disable	0	Disable ISO IN endpoint 8
	Enable	1	Enable ISO IN endpoint 8

6.26.13.46 EPOUTEN

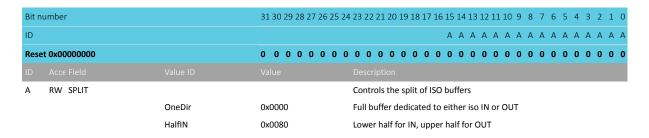
Address offset: 0x514 Endpoint OUT enable


Bit number		31 30 29 28 27 2	6 25 2	4 23 22 2	1 20 :	19 18	3 17	16 1	15 1	.4 13	3 12	11 1	LO 9	8	7	6	5	4	3 2	1 0
ID														-1	Н	G	F	Е) (ВА
Reset 0x0000001		0 0 0 0 0	0 (0 0 0	0 0	0 0	0	0	0 (0 0	0	0	0 0	0	0	0	0	0	0 0	0 1
ID Acce Field																				
A-H RW OUT[i] (i=07)				Enable	OUT	endp	oint	i												
	Disable	0		Disable	endp	point	OUT	Γi (r	no r	espo	onse	e to (TUC	tok	ens)				
	Enable	1		Enable	endp	oint	OUT	i (r	esp	onse	to	OUT	toke	ens)						
I RW ISOOUT				Enable	ISO C	DUT 6	endp	oint	t 8											
	Disable	0		Disable	ISO (OUT	endp	ooin	t 8											
	Enable	1		Enable	ISO C	DUT 6	endp	oint	t 8											

6.26.13.47 EPSTALL

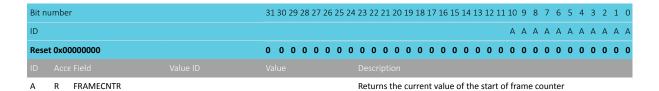
Address offset: 0x518

STALL endpoints



6.26.13.48 ISOSPLIT

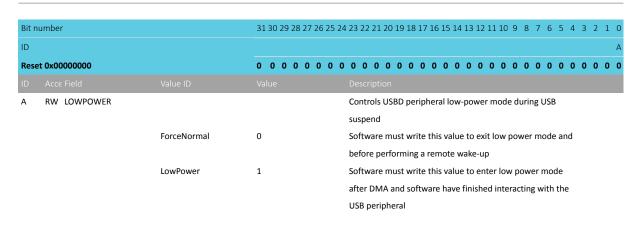
Address offset: 0x51C


Controls the split of ISO buffers

6.26.13.49 FRAMECNTR

Address offset: 0x520

Returns the current value of the start of frame counter



6.26.13.50 LOWPOWER

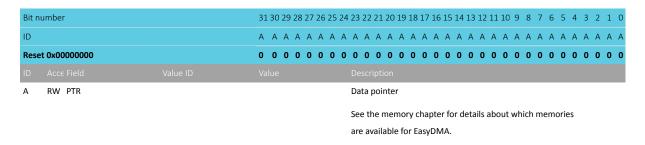
Address offset: 0x52C

Controls USBD peripheral low power mode during USB suspend

NORDIC

6.26.13.51 ISOINCONFIG

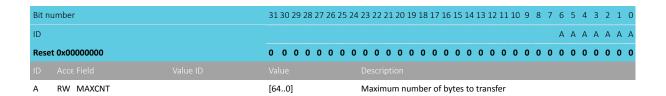
Address offset: 0x530


Controls the response of the ISO IN endpoint to an IN token when no data is ready to be sent

Bit r	umber		31 30 29 28 27 26	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	et 0x00000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	RW RESPONSE			Controls the response of the ISO IN endpoint to an IN token
				when no data is ready to be sent
		NoResp	0	Endpoint does not respond in that case
		ZeroData	1	Endpoint responds with a zero-length data packet in that
				case

6.26.13.52 EPIN[n].PTR (n=0..7)

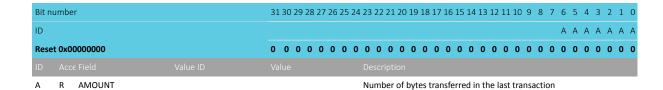
Address offset: $0x600 + (n \times 0x14)$


Data pointer

6.26.13.53 EPIN[n].MAXCNT (n=0..7)

Address offset: $0x604 + (n \times 0x14)$

Maximum number of bytes to transfer



6.26.13.54 EPIN[n].AMOUNT (n=0..7)

Address offset: $0x608 + (n \times 0x14)$

Number of bytes transferred in the last transaction

6.26.13.55 ISOIN.PTR

Address offset: 0x6A0

Data pointer

Bit n	umber	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4	2 1 0
ID		A A A A A A A A A A A A A A A A A A A	AAAA
Rese	t 0x00000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000
ID			
Α	RW PTR	Data pointer	

See the memory chapter for details about which memories are available for EasyDMA.

6.26.13.56 ISOIN.MAXCNT

Address offset: 0x6A4

Maximum number of bytes to transfer

Α	RW MAXCNT	[10231] N	Maximum number of bytes to transfer	
ID				
Rese	t 0x00000000	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0
ID			ААААА	A A A A
Bit n	umber	31 30 29 28 27 26 25 24 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4	3 2 1 0

6.26.13.57 ISOIN.AMOUNT

Address offset: 0x6A8

Number of bytes transferred in the last transaction

Bit number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID	A A A A A A A A A
Reset 0x00000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID	
A R AMOUNT	Number of bytes transferred in the last transaction

6.26.13.58 EPOUT[n].PTR (n=0..7)

Address offset: $0x700 + (n \times 0x14)$

Data pointer

ID /																										
Reset (0x00000000	0	0 0	0	0	0	0	0	0 (0	0	0	0 0	0	0	0 (0	0	0	0 0	0	0	0	0 (0	0 0
ID		Α	A A	Α	Α	Α	Α	Α.	Α /	A	Α.	Α .	А А	Α	Α	A A	A A	Α	Α .	А А	Α	Α	Α	A A	A	A A
Bit nun	nber	313	30 29	28	27	26	25 2	24 2	3 2	2 21	1 20	19 1	.8 17	⁷ 16	15	14 1	3 12	2 11	10	9 8	7	6	5	4 3	3 2	1 0

See the memory chapter for details about which memories are available for EasyDMA.

6.26.13.59 EPOUT[n].MAXCNT (n=0..7)

Address offset: $0x704 + (n \times 0x14)$ Maximum number of bytes to transfer

Α	R۱	V MAXCNT	[640)]				М	laxin	num	nun	nber	rof	byte	s to	tran	sfer									
ID																										
Re	set 0x	00000000	0 0	0	0 0	0	0 (0 0	0	0 (0 0	0	0	0 0	0	0	0 0	0	0	0 () (0	0	0	0	0 0
ID																					A	A	Α	Α	Α.	A A
Bit	numl	per	31 30	29	28 27	7 26 2	25 2	4 23	3 22	21 2	0 19	18	17 1	.6 15	5 14	13 1	L2 1:	1 10	9	8 7	7 6	5	4	3	2	1 0

6.26.13.60 EPOUT[n].AMOUNT (n=0..7)

Address offset: $0x708 + (n \times 0x14)$

Number of bytes transferred in the last transaction

Δ	R AMOUNT	Number of bytes transferred in the last transaction	
11			
R	eset 0x00000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
11)	A A A A A A	Α
В	it number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0

6.26.13.61 ISOOUT.PTR

Address offset: 0x7A0

Data pointer

ID																																
Rese	et 0x00000000	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
ID		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α		, Δ	A	A	Δ	Δ	. 4	. Δ	A	Δ	A	Α	Α	Α	Α	Α	Α	Α	A	A A
Bit n	umber	31	30	29	28	27	26	25	24	23	22	2 2:	1 2	0 19	9 18	3 17	7 10	5 1!	5 1	4 1	3 12	2 1	1 10	9	8	7	6	5	4	3	2	1 0

See the memory chapter for details about which memories are available for EasyDMA.

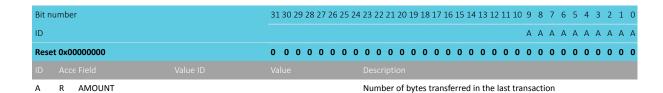
6.26.13.62 ISOOUT.MAXCNT

Address offset: 0x7A4

Maximum number of bytes to transfer

NORDIC*

Bit number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID	A A A A A A A A A A A A A A A A A A A
Reset 0x00000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field Value ID	Value Description


Maximum number of bytes to transfer

6.26.13.63 ISOOUT.AMOUNT

Address offset: 0x7A8

RW MAXCNT

Number of bytes transferred in the last transaction

6.26.14 Electrical specification

6.26.14.1 USB Electrical Specification

Symbol	Description	Min.	Тур.	Max.	Units
R _{USB,PU,ACTIVE}	Value of pull-up on D+, bus active (upstream device	1425	2300	3090	Ω
	transmitting)				
R _{USB,PU,IDLE}	Value of pull-up on D+, bus idle	900	1200	1575	Ω
t _{USB,DETRST}	Minimum duration of an SEO state to be detected as a USB				μs
	reset condition				
f _{USB,CLK}	Frequency of local clock, USB active		48		MHz
$f_{USB,TOL}$	Accuracy of local clock, USB active 36			±1000	ppm
T _{USB,JITTER}	Jitter on USB local clock, USB active			±1	ns

6.27 WDT — Watchdog timer

A countdown watchdog timer using the low-frequency clock source (LFCLK) offers configurable and robust protection against application lock-up.

The watchdog timer is started by triggering the START task.

The watchdog can be paused during long CPU sleep periods for low power applications and when the debugger has halted the CPU. The watchdog is implemented as a down-counter that generates a TIMEOUT event when it wraps over after counting down to 0. When the watchdog timer is started through the START task, the watchdog counter is loaded with the value specified in the CRV register. This counter is also reloaded with the value specified in the CRV register when a reload request is granted.

The watchdog's timeout period is given by:

```
timeout [s] = ( CRV + 1 ) / 32768
```

³⁶ The local clock can be stopped during USB suspend

When started, the watchdog will automatically force the 32.768 kHz RC oscillator on as long as no other 32.768 kHz clock source is running and generating the 32.768 kHz system clock, see chapter CLOCK — Clock control on page 72.

6.27.1 Reload criteria

The watchdog has eight separate reload request registers, which shall be used to request the watchdog to reload its counter with the value specified in the CRV register. To reload the watchdog counter, the special value 0x6E524635 needs to be written to all enabled reload registers.

One or more RR registers can be individually enabled through the RREN register.

6.27.2 Temporarily pausing the watchdog

By default, the watchdog will be active counting down the down-counter while the CPU is sleeping and when it is halted by the debugger. It is however possible to configure the watchdog to automatically pause while the CPU is sleeping as well as when it is halted by the debugger.

6.27.3 Watchdog reset

A TIMEOUT event will automatically lead to a watchdog reset.

See Reset on page 60 for more information about reset sources. If the watchdog is configured to generate an interrupt on the TIMEOUT event, the watchdog reset will be postponed with two 32.768 kHz clock cycles after the TIMEOUT event has been generated. Once the TIMEOUT event has been generated, the impending watchdog reset will always be effectuated.

The watchdog must be configured before it is started. After it is started, the watchdog's configuration registers, which comprise registers CRV, RREN, and CONFIG, will be blocked for further configuration.

The watchdog can be reset from several reset sources, see Reset behavior on page 61.

When the device starts running again, after a reset, or waking up from OFF mode, the watchdog configuration registers will be available for configuration again.

6.27.4 Registers

Base address	Peripheral	Instance	Description	Configuration
0x40010000	WDT	WDT	Watchdog timer	

Table 113: Instances

Register	Offset	Description
TASKS_START	0x000	Start the watchdog
EVENTS_TIMEOUT	0x100	Watchdog timeout
INTENSET	0x304	Enable interrupt
INTENCLR	0x308	Disable interrupt
RUNSTATUS	0x400	Run status
REQSTATUS	0x404	Request status
CRV	0x504	Counter reload value
RREN	0x508	Enable register for reload request registers
CONFIG	0x50C	Configuration register
RR[0]	0x600	Reload request 0
RR[1]	0x604	Reload request 1
RR[2]	0x608	Reload request 2
RR[3]	0x60C	Reload request 3
RR[4]	0x610	Reload request 4

Register	Offset	Description
RR[5]	0x614	Reload request 5
RR[6]	0x618	Reload request 6
RR[7]	0x61C	Reload request 7

Table 114: Register overview

6.27.4.1 TASKS_START

Address offset: 0x000 Start the watchdog

Bit no	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	W TASKS_START			Start the watchdog
		Trigger	1	Trigger task

6.27.4.2 EVENTS_TIMEOUT

Address offset: 0x100 Watchdog timeout

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW EVENTS_TIMEOUT			Watchdog timeout
		NotGenerated	0	Event not generated
		Generated	1	Event generated

6.27.4.3 INTENSET

Address offset: 0x304 Enable interrupt

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				Α
Rese	et 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW TIMEOUT			Write '1' to enable interrupt for event TIMEOUT
Α	RW TIMEOUT	Set	1	Write '1' to enable interrupt for event TIMEOUT Enable
A	RW TIMEOUT	Set Disabled	1 0	·

6.27.4.4 INTENCLR

Address offset: 0x308

Disable interrupt

Bit number	31 30 29 28 2	7 26 25 24 23	22 21 20 1	19 18 17	⁷ 16 15	14 13	3 12 1	1 10 9	8	7	6	5 4	4 3	2	1 0
ID															Α
Reset 0x00000000	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0	0 0	0 (0 0	0	0	0	0 (0 0	0	0 0
ID Acce Field Value															
A RW TIMEOUT		W	ite '1' to d	lisable ii	nterru	ot for	event	TIME	TUC						
Clear	1	Di	able												
Disabl	ed 0	Re	ad: Disable	ed											
Enable	ed 1	Re	ad: Enable	ed .											

6.27.4.5 RUNSTATUS

Address offset: 0x400

Run status

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А
Rese	t 0x00000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
Α	R RUNSTATUS			Indicates whether or not the watchdog is running
		NotRunning	0	Watchdog not running
		Running	1	Watchdog is running

6.27.4.6 REQSTATUS

Address offset: 0x404

Request status

Bit number		31 30	29 28	3 27	26	25 2	24 2	3 2	2 2	1 20	0 19	18	3 17	16	15	14	13	12 1	1 1	o 9	8	7	6	5	4 3	3 2	1	0
ID																						Н	G	F	E [) C	В	Α
Reset 0x00000001		0 0	0 0	0	0	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0 (0	0	1
ID Acce Field																												
A-H R RR[i] (i=07)							F	Requ	ues	t sta	atus	s fo	r RI	R[i]	reg	iste	er											
	DisabledOrRequested	0					F	RR[i]] re	gist	er i	s no	ot e	nal	bled	l, o	r ar	e al	reac	ly re	equ	esti	ng					
							r	eloa	ad																			
EnabledAndUnrequested		d 1					F	RR[i]	l re	gist	er i	s er	nab	led	. an	ıd a	re r	not '	vet i	eai	ıest	ing	relo	had				

6.27.4.7 CRV

Address offset: 0x504 Counter reload value

A RW CRV	[0x0000000E_0xEFFFFFFF]ounter reload value in number of cycles of the 32 768 kHz
ID Acce Field	Value Description
Reset 0xFFFFFFF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ID	A A A A A A A A A A A A A A A A A A A
Bit number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

clock

6.27.4.8 RREN

Address offset: 0x508

Enable register for reload request registers

Bit number		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			HGFEDCBA
Reset 0x00000001		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID Acce Field			Description
A-H RW RR[i] (i=07)			Enable or disable RR[i] register
	Disabled	0	Disable RR[i] register
	Enabled	1	Enable RR[i] register

6.27.4.9 CONFIG

Address offset: 0x50C Configuration register

Bit n	umber		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				C A
Rese	t 0x00000001		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
Α	RW SLEEP			Configure the watchdog to either be paused, or kept
				running, while the CPU is sleeping
		Pause	0	Pause watchdog while the CPU is sleeping
		Run	1	Keep the watchdog running while the CPU is sleeping
С	RW HALT			Configure the watchdog to either be paused, or kept
				running, while the CPU is halted by the debugger
		Pause	0	Pause watchdog while the CPU is halted by the debugger
		Run	1	Keep the watchdog running while the CPU is halted by the
				debugger

6.27.4.10 RR[n] (n=0..7)

Address offset: $0x600 + (n \times 0x4)$

Reload request n

Bit n	umber		31	30 2	29 2	8 27	7 26	25	24	23	22	21 2	20 1	19 1	8 1	7 16	15	14	13 1	2 1	1 10	9	8	7	6	5	4 3	2	1 0
ID			Α	Α .	A A	A	Α	Α	Α	Α	Α	Α	A	A A	Δ Δ	A	Α	Α	A	Δ Δ	A	Α	Α	Α	Α	Α	A A	A	ΑА
Rese	et 0x00000000		0	0	0 (0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0
ID																													
Α	W RR									Rel	oac	d re	que	est r	egis	ter													
		Reload	0x6	5E52	2463	35				Val	ue	to r	equ	ıest	a r	eloa	ıd o	f th	e wa	atch	dog	tim	ier						

6.27.5 Electrical specification

6.27.5.1 Watchdog Timer Electrical Specification

Symbol	Description	Min.	Тур.	Max.	Units
t _{WDT}	Time out interval	458 μs		36 h	

7 Hardware and layout

7.1 Pin assignments

The pin assignment figures and tables describe the pinouts for the product variants of the chip.

The nRF52820 device provides flexibility regarding GPIO pin routing and configuration. However, some pins have limitations or recommendations for pin configurations and uses.

7.1.1 QFN40 pin assignments

The pin assignment figure and table describe the assignments for this variant of the chip.

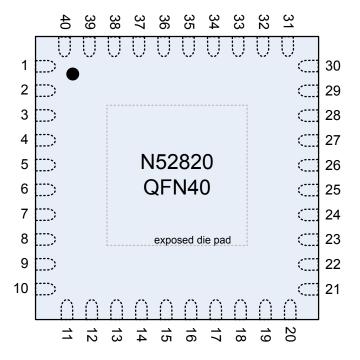


Figure 146: QFN40 pin assignments, top view

Pin	Name	Function	Description	Recommended usage
Left side of	the chip			
1	DEC1	Power	1.1 V Digital supply decoupling	
2	P0.00	Digital I/O	General purpose I/O	
	XL1	Analog input	Connection for 32.768 kHz crystal	
3	P0.01	Digital I/O	General purpose I/O	
3		-		
	XL2	Analog input	Connection for 32.768 kHz crystal	
4	P0.04	Digital I/O	General purpose I/O	
	AIN2	Analog input	Analog input	
5	P0.05	Digital I/O	General purpose I/O	
	AIN3	Analog input	Analog input	
6	P0.06	Digital I/O	General purpose I/O	
7	P0.07	Digital I/O	General purpose I/O	
8	VDD	Power	Power supply	
9	VDDH	Power	High voltage power supply	
10	VBUS	Power	5 V input for USB 3.3 V regulator	
Bottom side	of the chip			
11	DECUSB	Power	USB 3.3 V regulator supply decoupling	
12	D-	USB	USB D-	
13	D+	USB	USB D+	
14	P0.14	Digital I/O	General purpose I/O	
15	P0.15	Digital I/O	General purpose I/O	
16	P0.18	Digital I/O	General purpose I/O	
	nRESET		Configurable as pin RESET	
17	P0.20	Digital I/O	General purpose I/O	
18	VDD	Power	Power supply	
19	SWDIO	Debug	Serial wire debug I/O for debug and program	mming
20	SWDCLK	Debug	Serial wire debug clock input for debug and	
			programming	
Right side o				
21	DEC5	Power	1.3 V regulator supply decoupling	
22	P0.16	Digital I/O	General purpose I/O	Standard drive, low frequency I/O
22	DO 17	Digital I/O	Conord purpose I/O	only Standard drive, low frequency I/O
23	P0.17	Digital I/O	General purpose I/O	only
24	ANT	RF	Single-ended radio antenna connection	See Reference circuitry on page
2-7	7441		Single chaca radio antenna connection	421 for guidelines on how to
				ensure good RF performance
25	VSS_PA	Power	Ground (radio supply)	,
26	DEC6	Power	1.3 V regulator supply decoupling	Must be connected to DEC4 (pin
				38)
27	DEC3	Power	Power supply, decoupling	
28	XC1	Analog input	Connection for 32 MHz crystal	
29	XC2	Analog input	Connection for 32 MHz crystal	
30	VDD	Power	Power supply	
Top side of t	the chip			
31	P0.08	Digital I/O	General purpose I/O	Standard drive, low frequency I/O only
32	P0.29	Digital I/O	General purpose I/O	Standard drive, low frequency I/O only
33	P0.30	Digital I/O	General purpose I/O	Standard drive, low frequency I/O only

Pin	Name	Function	Description	Recommended usage
34	P0.28	Digital I/O	General purpose I/O	Standard drive, low frequency I/O
				only
35	P0.03	Digital I/O	General purpose I/O	Standard drive, low frequency I/O
	AIN1	Analog input	Analog input	only
36	P0.02	Digital I/O	General purpose I/O	
	AIN0	Analog input	Analog input	
37	VSS	Power	Ground	
38	DEC4	Power	1.3 V regulator supply decoupling	Must be connected to DEC6 (pin
				26)
39	DCC	Power	DC/DC converter output	
40	VDD	Power	Power supply	
Backside of the	e the chip			
Die pad	VSS	Power	Ground pad	Exposed die pad must be
				connected to ground (VSS) for
				proper device operation

Table 115: QFN40 pin assignments

Note: For more information on standard drive, see GPIO — General purpose input/output on page 130. Low frequency I/O is a signal with a frequency up to 10 kHz.

7.2 Mechanical specifications

The mechanical specifications for the packages show the dimensions in millimeters.

7.2.1 QFN40 5 x 5 mm package

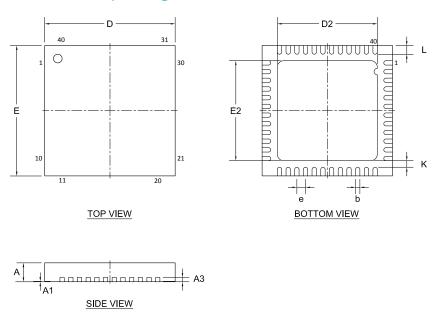


Figure 147: QFN40 5 x 5 mm package

	Α	A1	А3	b	D, E	D2, E2	е	K	L
Min.	0.80	0.00		0.15	4.90	3.50		0.20	0.30
Nom.	0.85	0.035	0.203	0.20	5.00	3.60	0.40		0.35
Max.	0.90	0.05		0.25	5.10	3.70			0.40

Table 116: QFN40 dimensions in millimeters

7.3 Reference circuitry

To ensure good RF performance when designing PCBs, it is highly recommended to use the PCB layouts and component values provided by Nordic Semiconductor.

Documentation for the different package reference circuits, including Altium Designer files, PCB layout files, and PCB production files can be downloaded from the product page for the nRF52820 on www.nordicsemi.com.

In this section there are reference circuits for QDAA QFN40 package, showing the components and component values to support on-chip features in a design.

Note: This is not a complete list of configurations, but all required circuitry is shown for further configurations.

Some general guidance is summarized here:

- When supplying power from a USB source only, VBUS must be connected to VDDH if USB is to be used.
- Components required for DC/DC function are only needed if DC/DC mode is enabled for that regulator.
- USB can be used in any configuration as long as VBUS is supplied by the USB host.
- The schematics include an optional series resistor on the USB supply for improved immunity to transient overvoltage during VBUS connection. Using the series resistor is recommended for new designs.

Circuit configurations for QDAA QFN40

Config no.	Supply configuration		Features that ca	n be enabled for on example
	VDDH	VDD	DCDCEN1	USB
Config. 1	USB (VDDH = VBUS)	N/A	No	Yes
Config. 2	N/A	Battery/Ext. regulator	Yes	Yes
Config. 3	N/A	Battery/Ext. regulator	No	Yes
Config. 4	N/A	Battery/Ext. regulator	No	No

Table 117: Circuit configurations

7.3.1 Circuit configuration no. 1 for QDAA QFN40

Circuit configuration number 1 for QDAA QFN40, showing the schematic and the bill of materials table.

Config no.	Supply configuration		Enabled features
	VDDH	VDD	DCDCEN1 USB
Config. 1	USB (VDDH = VBUS)	N/A	No Yes

Table 118: Configuration summary for circuit configuration no. 1

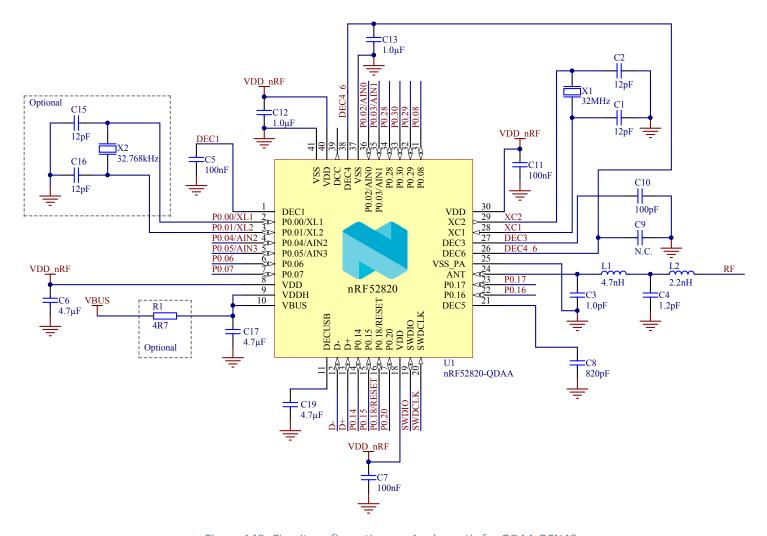


Figure 148: Circuit configuration no. 1 schematic for QDAA QFN40

Note: For PCB reference layouts, see the product page for the nRF52820 on www.nordicsemi.com.

Designator	Value	Description	Footprint
C1, C2, C15, C16	12 pF	Capacitor, NPO, ±2%	0201
C3	1.0 pF	Capacitor, NPO, ±5%	0201
C4	1.2 pF	Capacitor, NPO, ±5%	0201
C5, C7, C11	100 nF	Capacitor, X7S, ±10%	0201
C6, C19	4.7 μF	Capacitor, X7R, ±10%	0603
C8	820 pF	Capacitor, X7R, ±10%	0201
C9	N.C.	Not mounted	0201
C10	100 pF	Capacitor, NPO, ±5%	0201
C12, C13	1.0 μF	Capacitor, X7S, ±10%	0402
C17	4.7 μF	Capacitor, X7S, ±10%	0603
L1	4.7 nH	High frequency chip inductor, ±5%	0201
L2	2.2 nH	High frequency chip inductor, ±5%	0201
R1	4R7	Resistor ±1%, 0.05 W	0201
U1	nRF52820- QDAA	Multiprotocol <i>Bluetooth</i> [®] Low Energy, IEEE 802.15.4, ANT, and 2.4 GHz proprietary System on Chip	QFN-40
X1	32 MHz	Crystal SMD 1612, 32 MHz, Cl=8 pF, Total Tol: ±40 ppm	XTAL_1612
X2	32.768 kHz	Crystal SMD 2012, 32.768 kHz, Cl=9 pF, Total Tol: ±50 ppm	XTAL_2012

Table 119: Bill of material for circuit configuration no. 1

7.3.2 Circuit configuration no. 2 for QDAA QFN40

Circuit configuration number 2 for QDAA QFN40, showing the schematic and the bill of materials table.

Config no.	Config no. Supply configuration		Enabled features	
	VDDH	VDD	DCDCEN1	USB
Config. 2	N/A	Battery/Ext. regulator	Yes	Yes

Table 120: Configuration summary for circuit configuration no. 2

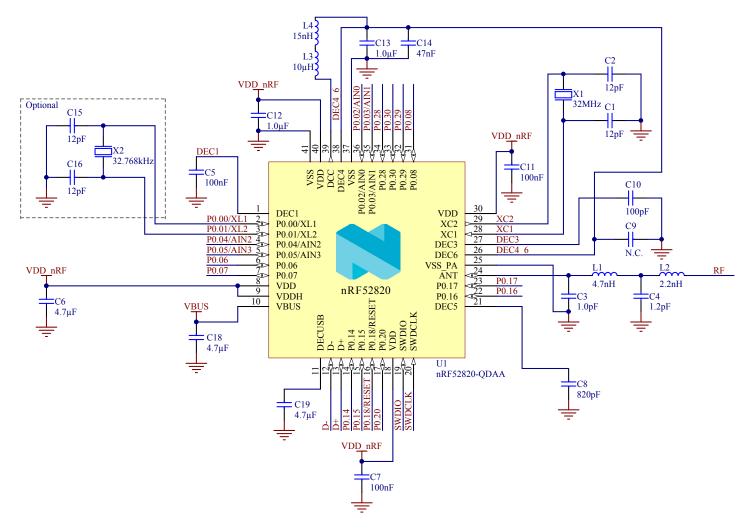


Figure 149: Circuit configuration no. 2 schematic for QDAA QFN40

Note: For PCB reference layouts, see the product page for the nRF52820 on www.nordicsemi.com.

Designator	Value	Description	Footprint
C1, C2, C15, C16	12 pF	Capacitor, NPO, ±2%	0201
C3	1.0 pF	Capacitor, NPO, ±5%	0201
C4	1.2 pF	Capacitor, NPO, ±5%	0201
C5, C7, C11	100 nF	Capacitor, X7S, ±10%	0201
C6, C19	4.7 μF	Capacitor, X7R, ±10%	0603
C8	820 pF	Capacitor, X7R, ±10%	0201
C9	N.C.	Not mounted	0201
C10	100 pF	Capacitor, NPO, ±5%	0201
C12, C13	1.0 μF	Capacitor, X7S, ±10%	0402
C14	47 nF	Capacitor, X7S, ±10%	0201
C18	4.7 μF	Capacitor, X7S, ±10%	0603
L1	4.7 nH	High frequency chip inductor, ±5%	0201
L2	2.2 nH	High frequency chip inductor, ±5%	0201
L3	10 μΗ	Chip inductor, IDC,min = 50 mA, ±20%	0603
L4	15 nH	High frequency chip inductor, ±10%	0402
U1	nRF52820- QDAA	Multiprotocol <i>Bluetooth</i> [®] Low Energy, IEEE 802.15.4, ANT, and 2.4 GHz proprietary System on Chip	QFN-40
X1	32 MHz	Crystal SMD 1612, 32 MHz, Cl=8 pF, Total Tol: ±40 ppm	XTAL_1612
X2	32.768 kHz	Crystal SMD 2012, 32.768 kHz, Cl=9 pF, Total Tol: ±50 ppm	XTAL_2012

Table 121: Bill of material for circuit configuration no. 2

7.3.3 Circuit configuration no. 3 for QDAA QFN40

Circuit configuration number 3 for QDAA QFN40, showing the schematic and the bill of materials table.

Config no.	Config no. Supply configuration		Enabled featur	res
	VDDH	VDD	DCDCEN1	USB
Config. 3	N/A	Battery/Ext. regulator	No	Yes

Table 122: Configuration summary for circuit configuration no. 3

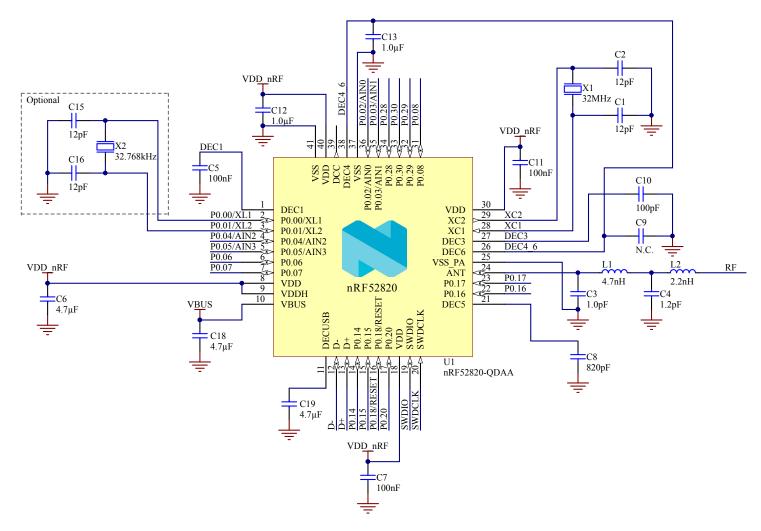


Figure 150: Circuit configuration no. 3 schematic for QDAA QFN40

Note: For PCB reference layouts, see the product page for the nRF52820 on www.nordicsemi.com.

Designator	Value	Description	Footprint
C1, C2, C15, C16	12 pF	Capacitor, NPO, ±2%	0201
C3	1.0 pF	Capacitor, NPO, ±5%	0201
C4	1.2 pF	Capacitor, NPO, ±5%	0201
C5, C7, C11	100 nF	Capacitor, X7S, ±10%	0201
C6, C19	4.7 μF	Capacitor, X7R, ±10%	0603
C8	820 pF	Capacitor, X7R, ±10%	0201
C9	N.C.	Not mounted	0201
C10	100 pF	Capacitor, NPO, ±5%	0201
C12, C13	1.0 μF	Capacitor, X7S, ±10%	0402
C18	4.7 μF	Capacitor, X7S, ±10%	0603
L1	4.7 nH	High frequency chip inductor, ±5%	0201
L2	2.2 nH	High frequency chip inductor, ±5%	0201
U1	nRF52820- QDAA	Multiprotocol <i>Bluetooth</i> [®] Low Energy, IEEE 802.15.4, ANT, and 2.4 GHz proprietary System on Chip	QFN-40
X1	32 MHz	Crystal SMD 1612, 32 MHz, Cl=8 pF, Total Tol: ±40 ppm	XTAL_1612
X2	32.768 kHz	Crystal SMD 2012, 32.768 kHz, Cl=9 pF, Total Tol: ±50 ppm	XTAL_2012

Table 123: Bill of material for circuit configuration no. 3

7.3.4 Circuit configuration no. 4 for QDAA QFN40

Circuit configuration number 4 for QDAA QFN40, showing the schematic and the bill of materials table.

Config no.	Supply configuration		Enabled featu	res
	VDDH	VDD	DCDCEN1	USB
Config. 4	N/A	Battery/Ext. regulator	No	No

Table 124: Configuration summary for circuit configuration no. 4

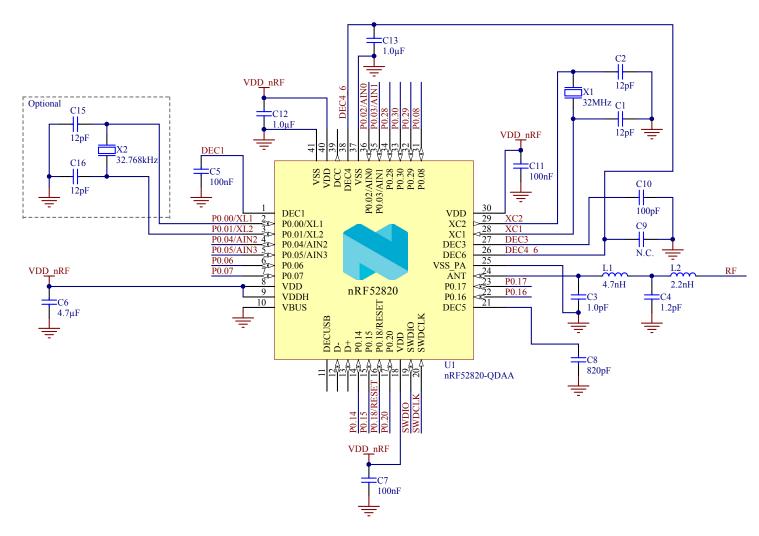


Figure 151: Circuit configuration no. 4 schematic for QDAA QFN40

Note: For PCB reference layouts, see the product page for the nRF52820 on www.nordicsemi.com.

Designator	Value	Description	Footprint
C1, C2, C15, C16	12 pF	Capacitor, NPO, ±2%	0201
C3	1.0 pF	Capacitor, NPO, ±5%	0201
C4	1.2 pF	Capacitor, NPO, ±5%	0201
C5, C7, C11	100 nF	Capacitor, X7S, ±10%	0201
C6	4.7 μF	Capacitor, X7R, ±10%	0603
C8	820 pF	Capacitor, X7R, ±10%	0201
C9	N.C.	Not mounted	0201
C10	100 pF	Capacitor, NPO, ±5%	0201
C12, C13	1.0 μF	Capacitor, X7S, ±10%	0402
L1	4.7 nH	High frequency chip inductor, ±5%	0201
L2	2.2 nH	High frequency chip inductor, ±5%	0201
U1	nRF52820- QDAA	Multiprotocol <i>Bluetooth</i> [®] Low Energy, IEEE 802.15.4, ANT, and 2.4 GHz proprietary System on Chip	QFN-40
X1	32 MHz	Crystal SMD 1612, 32 MHz, Cl=8 pF, Total Tol: ±40 ppm	XTAL_1612
X2	32.768 kHz	Crystal SMD 2012, 32.768 kHz, Cl=9 pF, Total Tol: ±50 ppm	XTAL_2012

Table 125: Bill of material for circuit configuration no. 4

7.3.5 PCB guidelines

A well designed PCB is necessary to achieve good RF performance. Poor layout can lead to loss in performance or functionality.

A qualified RF layout for the IC and its surrounding components, including matching networks, can be downloaded from www.nordicsemi.com.

To ensure optimal performance it is essential that you follow the schematics and layout references closely. Especially in the case of the antenna matching circuitry (components between device pin ANT and the antenna), any changes to the layout can change the behavior, resulting in degradation of RF performance or a need to change component values. All reference circuits are designed for use with a 50 Ω single-ended antenna.

A PCB with a minimum of four layers, including a ground plane, is recommended for optimal performance. On the inner layers, put a keep-out area on the inner layers directly below the antenna matching circuitry (components between device pin ANT and the antenna) to reduce the stray capacitances that influence RF performance.

A matching network is needed between the RF pin ANT and the antenna, to match the antenna impedance (normally $50~\Omega$) to the optimum RF load impedance for the chip. For optimum performance, the impedance for the matching network should be set as described in the recommended package reference circuitry in Reference circuitry on page 421.

The DC supply voltage should be decoupled as close as possible to the VDD pins with high performance RF capacitors. See the schematics for recommended decoupling capacitor values. The supply voltage for the chip should be filtered and routed separately from the supply voltages of any digital circuitry.

NORDIC SEMICONDUCTOR

Long power supply lines on the PCB should be avoided. All device grounds, VDD connections, and VDD bypass capacitors must be connected as close as possible to the IC. For a PCB with a topside RF ground plane, the VSS pins should be connected directly to the ground plane. For a PCB with a bottom ground plane, the best technique is to have via holes as close as possible to the VSS pads. A minimum of one via hole should be used for each VSS pin.

Fast switching digital signals should not be routed close to the crystal or the power supply lines. Capacitive loading of fast switching digital output lines should be minimized in order to avoid radio interference.

7.3.6 PCB layout example

The PCB layout shown in the following figures is a reference layout for the QFN package with internal LDO setup and VBUS supply.

Note: Pay attention to how the capacitor C3 is grounded. It is not directly connected to the ground plane, but grounded via VSS_PA pin 25. This is done to create additional filtering of harmonic components.

For all available reference layouts, see the product page for the nRF52820 on www.nordicsemi.com.

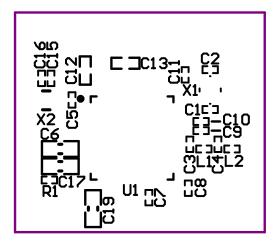


Figure 152: Top silk layer

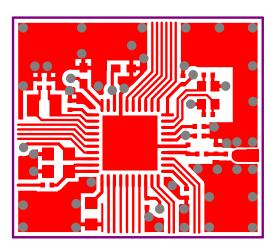


Figure 153: Top layer

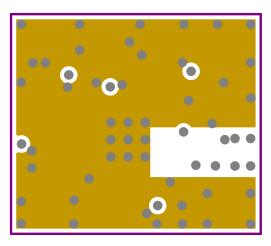


Figure 154: Mid layer 1

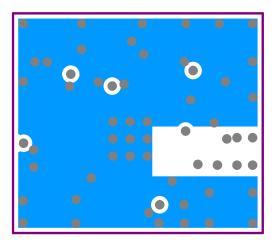


Figure 155: Mid layer 2

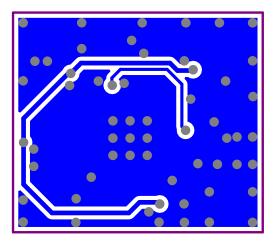


Figure 156: Bottom layer

Note: No components in bottom layer.

7.4 Package thermal characteristics

A summary of the thermal characteristics for the different packages available for the IC can be found below.

Symbol	Package	Тур.	Unit
$\theta_{JA,QFN40}$	QFN40	136.59	°C/W

Table 126: Package thermal characteristics

Values obtained by simulation following the EIA/JESD51-2 for still air condition.

Recommended operating conditions

The operating conditions are the physical parameters that the chip can operate within.

Symbol	Parameter	Min.	Nom.	Max.	Units
VDD	VDD supply voltage, independent of DCDC enable	1.7	3.0	3.6	V
VDD_{POR}	VDD supply voltage needed during power-on reset	1.75			V
VDDH	VDDH supply voltage	2.5	3.7	5.5	V
VBUS	VBUS USB supply voltage	4.35	5.0	5.5	V
t _{R_VDD}	Supply rise time (0 V to 1.7 V)			60	ms
t _{R_VDDH}	Supply rise time (0 V to 3.7 V)			100	ms
TA	Operating temperature	-40	25	85	°C
TA _{EXT}	Extended operating temperature	85		105	°C
Tı	Junction temperature			110	°C

Table 127: Recommended operating conditions

Note: The on-chip power-on reset circuitry may not function properly for rise times longer than the specified maximum.

8.1 Extended Operating Temperature

The operating temperature range for the device is defined in Recommended operating conditions on page 433. The range extends from TA minimum to TA_{EXT} maximum.

Some electrical parameters are valid only for the ${\tt TA}$ operating temperature conditions. When this is the case an additional parameter for the ${\tt TA}_{\tt EXT}$ extended operating temperature condition is provided.

Note: When running the device in the extended operating temperature conditions range, the register LFXODEBOUNCE on page 85 must be set to Extended.

To avoid surpassing the maximum die juntion temperature, see Recommended operating conditions on page 433, it is important to minimize current consumption when operating in the extended operating temperature conditions. It is therefore recommended to use the device in Normal Voltage mode with DC/DC enabled. See POWER — Power supply on page 52 for details about main supply modes.

9 Absolute maximum ratings

Maximum ratings are the extreme limits to which the chip can be exposed for a limited amount of time without permanently damaging it. Exposure to absolute maximum ratings for prolonged periods of time may affect the reliability of the device.³⁷

	Note	Min.	Max.	Unit
Supply voltages				
VDD		-0.3	+3.9	V
VDDH		-0.3	+5.8	V
VBUS		-0.3	+5.8	V
VSS			0	V
I/O pin voltage				
$V_{I/O}$, VDD \leq 3.6 V		-0.3	VDD + 0.3	V
V _{I/O} , VDD >3.6 V		-0.3	3.9	V
Environmental QFN40 package				
Storage temperature		-40	+125	°C
MSL	Moisture Sensitivity Level		2	
ESD HBM	Human Body Model		3	kV
ESD HBM Class	Human Body Model Class		2	
ESD CDM	Charged Device Model		1	kV
Flash memory				
Endurance		10 000		write/erase cycles
Retention at 85 °C		10		years
Retention at 105 °C	Limited to 1000 write/erase cycles	3		years
Retention at 105 °C-85 °C, execution split	Limited to 1000 write/erase cycles	6.7		years

75% execution time at 85 °C or less

Table 128: Absolute maximum ratings

For accellerated life time testing (HTOL, etc) supply voltage should not exceed the recommended operating conditions max value, see Recommended operating conditions on page 433.

10 Ordering information

This chapter contains information on IC marking, ordering codes, and container sizes.

10.1 IC marking

The nRF52820 package is marked as shown in the following figure.

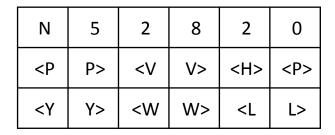


Figure 157: Package marking

10.2 Box labels

The following figures show the box labels used for nRF52820.

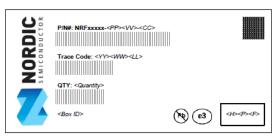


Figure 158: Inner box label

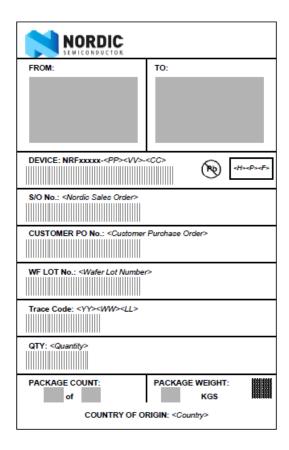


Figure 159: Outer box label

10.3 Order code

The following are the order codes and definitions for nRF52820.

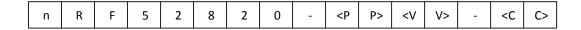


Figure 160: Order code

Abbrevitation	Definition and implemented codes
N52/nRF52	nRF52 Series product
820	Part code
<pp></pp>	Package variant code
<vv></vv>	Function variant code
<h><p><f></f></p></h>	Build code H - Hardware version code P - Production configuration code (production site, etc.) F - Firmware version code (only visible on shipping container label)
<yy><ww><ll></ll></ww></yy>	Tracking code YY - Year code WW - Assembly week number LL - Wafer lot code
<cc></cc>	Container code

Table 129: Abbreviations

10.4 Code ranges and values

Defined here are the nRF52820 code ranges and values.

<pp></pp>	Package	Size (mm)	Pin/Ball count	Pitch (mm)
QD	QFN	5 x 5	40	0.4

Table 130: Package variant codes

<vv></vv>	Flash (kB)	RAM (kB)
AA	256	32

Table 131: Function variant codes

<h>></h>	Description
[A Z]	Hardware version/revision identifier (incremental)

Table 132: Hardware version codes

<p></p>	Description
[09]	Production device identifier (incremental)
[A Z]	Engineering device identifier (incremental)

Table 133: Production configuration codes

<f></f>	Description
[A N, P Z]	Version of preprogrammed firmware
[0]	Delivered without preprogrammed firmware

Table 134: Production version codes

<yy></yy>	Description
[0099]	Production year: 2000 to 2099

Table 135: Year codes

<ww></ww>	Description
[152]	Week of production

Table 136: Week codes

<ll></ll>	Description
[AA ZZ]	Wafer production lot identifier

Table 137: Lot codes

<cc></cc>	Description
R7	7" Reel
R	13" Reel

Table 138: Container codes

10.5 Product options

Defined here are the nRF52820 product options.

Order code	MOQ ³⁸
nRF52820-QDAA-R7	1500
nRF52820-QDAA-R	4000

Table 139: nRF52820 order codes

NORDIC SEMICONDUCTOR

³⁸ Minimum Ordering Quantity

11 Legal notices

By using this documentation you agree to our terms and conditions of use. Nordic Semiconductor may change these terms and conditions at any time without notice.

Liability disclaimer

Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to improve reliability, function, or design. Nordic Semiconductor ASA does not assume any liability arising out of the application or use of any product or circuits described herein.

Nordic Semiconductor ASA does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. If there are any discrepancies, ambiguities or conflicts in Nordic Semiconductor's documentation, the Product Specification prevails.

Nordic Semiconductor ASA reserves the right to make corrections, enhancements, and other changes to this document without notice.

Life support applications

Nordic Semiconductor products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury.

Nordic Semiconductor ASA customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Nordic Semiconductor ASA for any damages resulting from such improper use or sale.

RoHS and REACH statement

Refer to www.nordicsemi.com for complete hazardous substance reports, material composition reports, and latest version of Nordic's RoHS and REACH statements.

Trademarks

All trademarks, service marks, trade names, product names, and logos appearing in this documentation are the property of their respective owners.

Copyright notice

© 2020 Nordic Semiconductor ASA. All rights are reserved. Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder.

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL

= ISO 9001 =

